Abstract

Current optical coherence tomography (OCT) based micro-angiography is prone to noise that arises from static background. This work presents a novel feature space based optical micro-angiography (OMAG) method (fsOMAG) that can effectively differentiate flow signal from static background in the feature space. fsOMAG consists of two steps. In the first step a classification map is generated that provides criterion for classification in the second step to extract functional blood flow from experimental data set. The performance of fsOMAG is examined through phantom experiments and in-vivo human retinal imaging, and compared with the existing OMAG. The results indicate its potential for clinical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical coherence tomography based angiography [Invited]

Chieh-Li Chen and Ruikang K. Wang
Biomed. Opt. Express 8(2) 1056-1082 (2017)

Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

Yali Jia, Ou Tan, Jason Tokayer, Benjamin Potsaid, Yimin Wang, Jonathan J. Liu, Martin F. Kraus, Hrebesh Subhash, James G. Fujimoto, Joachim Hornegger, and David Huang
Opt. Express 20(4) 4710-4725 (2012)

In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)

Joey Enfield, Enock Jonathan, and Martin Leahy
Biomed. Opt. Express 2(5) 1184-1193 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  2. Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
    [Crossref] [PubMed]
  3. Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
    [Crossref] [PubMed]
  4. M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
    [Crossref] [PubMed]
  5. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
    [Crossref] [PubMed]
  6. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [Crossref] [PubMed]
  7. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [Crossref] [PubMed]
  8. S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
    [Crossref] [PubMed]
  9. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [Crossref] [PubMed]
  10. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [Crossref] [PubMed]
  11. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  12. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [Crossref] [PubMed]
  13. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
    [Crossref] [PubMed]
  14. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]
  15. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
    [Crossref] [PubMed]
  16. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [PubMed]
  17. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  18. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  19. W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
    [Crossref] [PubMed]
  20. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
    [Crossref] [PubMed]
  21. A. S. G. Singh, T. Schmoll, and R. A. Leitgeb, “Segmentation of Doppler optical coherence tomography signatures using a support-vector machine,” Biomed. Opt. Express 2(5), 1328–1339 (2011).
    [PubMed]
  22. A. Zhang, J. Xi, W. Liang, T. Gao, and X. Li, “Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images,” Opt. Lett. 39(15), 4392–4395 (2014).
    [Crossref] [PubMed]
  23. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (the MIT Press, 2006).
  24. A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).
  25. American National Standard Institute, “Safe use of lasers and safe use of optical fiber communications,” (ANSI, New York; 2000), no. 168.
  26. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
    [Crossref] [PubMed]
  27. Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
    [Crossref]

2015 (2)

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
[Crossref]

2014 (4)

A. Zhang, J. Xi, W. Liang, T. Gao, and X. Li, “Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images,” Opt. Lett. 39(15), 4392–4395 (2014).
[Crossref] [PubMed]

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
[Crossref] [PubMed]

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

2012 (3)

2011 (4)

A. S. G. Singh, T. Schmoll, and R. A. Leitgeb, “Segmentation of Doppler optical coherence tomography signatures using a support-vector machine,” Biomed. Opt. Express 2(5), 1328–1339 (2011).
[PubMed]

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
[Crossref] [PubMed]

2010 (5)

2009 (2)

2008 (1)

2007 (2)

2006 (1)

1997 (1)

Akiba, M.

An, L.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[Crossref] [PubMed]

Baillif, S.

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Baran, U.

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
[Crossref] [PubMed]

Barry, S.

Boas, D. A.

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Braaf, B.

Cable, A.

Cable, A. E.

Cepurna, W.

Chen, Z.

Choi, W. J.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

de Boer, J. F.

Durbin, M. K.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Fingler, J.

Francis, P.

Fraser, S. E.

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Gao, T.

Gastaud, P.

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Gregori, G.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Gruber, A.

Hanson, S. R.

Hong, Y.

Hornegger, J.

Huang, D.

Huang, Y.

Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
[Crossref]

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Hurst, S.

Jacques, S. L.

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Jia, Y.

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
[Crossref] [PubMed]

Jiang, J.

Jiang, J. Y.

Johnson, E.

Khurana, M.

Kraus, M. F.

Laron, M.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Leitgeb, R. A.

Leung, M. K. K.

Li, P.

Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
[Crossref] [PubMed]

Li, X.

Li, Y.

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
[Crossref] [PubMed]

Liang, W.

Liu, J. J.

Ma, Z.

Makita, S.

Malekafzali, A.

Mariampillai, A.

Mauget-Faÿsse, M.

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Milner, T. E.

Miura, M.

Moriyama, E. H.

Morrison, J.

Munce, N. R.

Nelson, J. S.

Paoli, V.

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Potsaid, B.

Qin, J.

Radhakrishnan, H.

Reif, R.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Rosenfeld, P. J.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Schmoll, T.

Schwartz, D.

Sharma, U.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Shen, T.

Singh, A. S. G.

Srinivas, S.

Srinivasan, V. J.

Standish, B. A.

Stetson, P. F.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Subhash, H.

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Tan, O.

Thorell, M. R.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Tokayer, J.

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

van Gemert, M. J. C.

Vermeer, K. A.

Vienola, K. V.

Vitkin, I. A.

Wang, R. K.

Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
[Crossref]

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
[Crossref] [PubMed]

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
[Crossref] [PubMed]

Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Werner, J. S.

Wilson, B. C.

Wilson, D. J.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Wolff, B.

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Wu, W.

Xi, J.

Yamanari, M.

Yang, V. X. D.

Yaseen, M. A.

Yasuno, Y.

Yatagai, T.

Yousefi, S.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Yu, L.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[Crossref] [PubMed]

Zawadzki, R. J.

Zhang, A.

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

A. Zhang, J. Xi, W. Liang, T. Gao, and X. Li, “Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images,” Opt. Lett. 39(15), 4392–4395 (2014).
[Crossref] [PubMed]

Zhang, Q.

Y. Huang, Q. Zhang, and R. K. Wang, “Efficient method to suppress artifacts caused by tissue hyper-reflections in optical microangiography of retina in vivo,” Biomed. Opt. Express 6(4), 1195–1208 (2015).
[Crossref]

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Zhi, Z.

Zhong, Z.

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

Biomed. Opt. Express (3)

J. Biomed. Opt. (4)

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Y. Jia, P. Li, and R. K. Wang, “Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice,” J. Biomed. Opt. 16(9), 096019 (2011).
[Crossref] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[Crossref] [PubMed]

Mod. Technol. Med. (1)

A. Zhang, Q. Zhang, Y. Huang, Z. Zhong, and R. K. Wang, “Multifunctional 1050 nm spectral domain OCT system at 147K for posterior eye imaging,” Mod. Technol. Med. 7(1), 7–12 (2015).

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Ophthalmic Surg Lasers Imaging Retina (1)

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Opt. Express (7)

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[Crossref] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[Crossref] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

PLoS ONE (1)

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS ONE 9(11), e113658 (2014).
[Crossref] [PubMed]

Retina (1)

S. Baillif, B. Wolff, V. Paoli, P. Gastaud, and M. Mauget-Faÿsse, “Retinal fluorescein and indocyanine green angiography and spectral-domain optical coherence tomography findings in acute retinal pigment epitheliitis,” Retina 31(6), 1156–1163 (2011).
[Crossref] [PubMed]

Other (2)

C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (the MIT Press, 2006).

American National Standard Institute, “Safe use of lasers and safe use of optical fiber communications,” (ANSI, New York; 2000), no. 168.

Supplementary Material (2)

» Media 1: MOV (1523 KB)     
» Media 2: MOV (675 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Flow chart of the implementation of fsOMAG.
Fig. 2
Fig. 2 The training step of fsOMAG. (a) Structural image of solid phantom; (b) Structural image of liquid phantom; (c) Flow image of solid phantom; (d) Flow image of liquid phantom; (e) The feature space projection of both solid and liquid phantom data; (f) The classification map generated in the feature space. Scale bar: 300 µm.
Fig. 3
Fig. 3 Phantom experiments. (a) The structural image; (b) fsOMAG results; (c) OMAG results. Scale bar: 400 µm.
Fig. 4
Fig. 4 The fsOMAG results of in-vivo human retinal vasculature imaging compared with OMAG. (a)-(b) Representative B-scan flow images using fsOMAG and OMAG; (c)-(d) The enface view of the imaging volume processed using fsOMAG and OMAG; (e)-(f) The enface view of NFL using fsOMAG and OMAG.
Fig. 5
Fig. 5 The retinal vessel network in three dimensional space (Media 1). The close look (Media 2) demonstrates the feeding large vessels and capillaries at various layers. (a) Representative image of Media 1; (b) A snapshot of Media 2 at the side view of the volume.
Fig. 6
Fig. 6 The feature space projection of solid and liquid phantoms under different repetition numbers (N). (a)-(c) Projection of solid phantom under N = 5, 4, and 3 B-scan repetition. (d)-(f) Projection of liquid phantom under N = 5, 4, and 3 B-scan repetition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

p( t N+1 =1| t N )= p( t N+1 =1| a N+1 )p( a N+1 | t N )d a N+1

Metrics