Abstract

We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe’s diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lens-free endoscopy probe for optical coherence tomography

Sucbei Moon, Zhonglie Piao, Chang-Seok Kim, and Zhongping Chen
Opt. Lett. 38(12) 2014-2016 (2013)

Mode-filtered large-core fiber for optical coherence tomography

Sucbei Moon and Zhongping Chen
Appl. Opt. 51(34) 8262-8270 (2012)

Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography

Seon Young Ryu, Hae Young Choi, Jihoon Na, Woo June Choi, and Byeong Ha Lee
Appl. Opt. 47(10) 1510-1516 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
    [Crossref] [PubMed]
  2. B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Opt. Fiber Technol. Part B 19(6), 729–740 (2013).
    [Crossref]
  3. J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
    [Crossref] [PubMed]
  4. S. Moon, Z. Piao, C.-S. Kim, and Z. Chen, “Lens-free endoscopy probe for optical coherence tomography,” Opt. Lett. 38(12), 2014–2016 (2013).
    [Crossref] [PubMed]
  5. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
    [Crossref] [PubMed]
  6. K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, and M. J. Suter, “Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance,” Biomed. Opt. Express 3(8), 1947–1954 (2012).
    [Crossref] [PubMed]
  7. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett. 36(19), 3894–3896 (2011).
    [Crossref] [PubMed]
  8. X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express 5(1), 136–148 (2013).
    [PubMed]
  9. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
    [Crossref] [PubMed]
  10. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [Crossref] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004).
    [Crossref] [PubMed]
  12. S. Moon, S.-W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18(20), 21183–21197 (2010).
    [Crossref] [PubMed]
  13. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000), Chap. 3.
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991), Chap. 3.
  15. S. Moon and Z. Chen, “Mode-filtered large-core fiber for optical coherence tomography,” Appl. Opt. 51(34), 8262–8270 (2012).
    [Crossref] [PubMed]
  16. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  17. S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17(12), 2604–2606 (2005).
    [Crossref]
  18. S. Moon, G. Liu, and Z. Chen, “Mode-filtered large-core fiber for short-pulse delivery with reduced nonlinear effects,” Opt. Lett. 36(17), 3362–3364 (2011).
    [Crossref] [PubMed]
  19. A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt. 25(19), 3460–3465 (1986).
    [Crossref] [PubMed]
  20. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
    [Crossref]
  21. J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
    [Crossref]
  22. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976).
    [Crossref]
  23. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [Crossref]
  24. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [Crossref] [PubMed]
  25. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
    [Crossref] [PubMed]
  26. B. Y. Yeo, R. A. McLaughlin, R. W. Kirk, and D. D. Sampson, “Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system,” Biomed. Opt. Express 3(7), 1565–1578 (2012).
    [Crossref] [PubMed]
  27. H. Y. Lee, T. Marvdashti, L. Duan, S. A. Khan, and A. K. Ellerbee, “Scalable multiplexing for parallel imaging with interleaved optical coherence tomography,” Biomed. Opt. Express 5(9), 3192–3203 (2014).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (4)

2011 (2)

2010 (1)

2009 (2)

2007 (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

2006 (2)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

2005 (1)

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17(12), 2604–2606 (2005).
[Crossref]

2004 (1)

2000 (1)

1996 (1)

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

1986 (2)

J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
[Crossref]

A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt. 25(19), 3460–3465 (1986).
[Crossref] [PubMed]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

1976 (2)

Adie, S. G.

Ahmad, A.

Applegate, M. B.

Boppart, S. A.

Bouma, B. E.

Brenner, M.

Chaney, E. J.

Chee, A.

Chen, Z.

Chudoba, C.

Conry, M.

Duan, L.

Edmond, M.

Ellerbee, A. K.

Fujimoto, J. G.

Grounds, M. D.

Gu, C.

Haibara, T.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

Ishikura, A.

Jing, J.

J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
[Crossref] [PubMed]

Kang, J. U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

Kato, Y.

Khan, S. A.

Kihara, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Kim, C.-S.

Kim, D. Y.

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17(12), 2604–2606 (2005).
[Crossref]

Kim, Y. H.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Opt. Fiber Technol. Part B 19(6), 729–740 (2013).
[Crossref]

Kirk, R. W.

Ko, T.

Krause, J. T.

J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
[Crossref]

Lee, B. H.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Opt. Fiber Technol. Part B 19(6), 729–740 (2013).
[Crossref]

Lee, H. Y.

Lee, S.-W.

Li, X.

Liu, G.

Lorenser, D.

Loy, A. C.

J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
[Crossref] [PubMed]

Marcuse, D.

Marvdashti, T.

Matsumoto, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

McDowell, E. J.

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[Crossref] [PubMed]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

McLaughlin, R. A.

Min, E. J.

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Opt. Fiber Technol. Part B 19(6), 729–740 (2013).
[Crossref]

Miyauchi, M.

Moon, S.

Mukai, D. S.

Piao, Z.

Pitris, C.

Quirk, B. C.

Reed, W. A.

J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
[Crossref]

Ren, J.

Rubinstein, M.

Sampson, D. D.

Sharma, U.

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
[Crossref] [PubMed]

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

Shishkov, M.

Simpson, M. C.

Suter, M. J.

Tan, K. M.

Tomita, S.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Tran, P. H.

Walker, K. L.

J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
[Crossref]

Wang, F.

Wong, B. J. F.

J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
[Crossref] [PubMed]

S. Moon, S.-W. Lee, M. Rubinstein, B. J. F. Wong, and Z. Chen, “Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging,” Opt. Express 18(20), 21183–21197 (2010).
[Crossref] [PubMed]

Wu, J.

Yang, C.

Yang, X.

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[Crossref] [PubMed]

Yeo, B. Y.

Zhang, J.

J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Biomed. Opt. Express (4)

IEEE Photon. Technol. Lett. (1)

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17(12), 2604–2606 (2005).
[Crossref]

J. Biomed. Opt. (2)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11(6), 063001 (2006).
[Crossref] [PubMed]

J. Jing, J. Zhang, A. C. Loy, B. J. F. Wong, and Z. Chen, “High-speed upper-airway imaging using full-range optical coherence tomography,” J. Biomed. Opt. 17(11), 110507 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

J. T. Krause, W. A. Reed, and K. L. Walker, “Splice loss of single-mode fiber as related to fusion time, temperature, and index profile alteration,” J. Lightwave Technol. 4(7), 837–840 (1986).
[Crossref]

J. Opt. Soc. Am. (2)

Opt. Express (2)

Opt. Fiber Technol. Part B (1)

B. H. Lee, E. J. Min, and Y. H. Kim, “Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements,” Opt. Fiber Technol. Part B 19(6), 729–740 (2013).
[Crossref]

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78(11), 113102 (2007).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000), Chap. 3.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of our STC fiber probe.
Fig. 2
Fig. 2 Beam intensity distributions measured at the output of our LCF along the lateral direction (a), and the increase of the beam width (FWHM) along the axial direction (b), respectively.
Fig. 3
Fig. 3 Various fiber-optic structures of core size transition: fiber taper, thermally expanded core (TEC) and stepwise transitional core (STC).
Fig. 4
Fig. 4 Calculated STC loss with the number of steps, N, for given MFD enlargement factors.
Fig. 5
Fig. 5 Normalized propagation constant (a), and the normalized group delay (b) as functions of V for LP01, LP11, LP21 and LP02 modes; with the intensity patterns of the mode fields (c).
Fig. 6
Fig. 6 Curvature losses of our LCF, TF1 and the standard SMF with various bend radius, R.
Fig. 7
Fig. 7 Microscopic pictures of the fabricated STC probe (a), and the coordinate setting of x, y and z (b).
Fig. 8
Fig. 8 Measured intensity patterns on the xy-planes for various distance, D, when the probe was immersed in water (ne = 1.32) and index-matching gel (ne = 1.45). The black square on the right-hand side shows the dimensions of the beam size.
Fig. 9
Fig. 9 Beam width expansion as a function of distance, D, for the case of ne = 1.32 (a), and for that of ne = 1.45 (b). The circular dots represent the measurements along the x-axis while the triangular dots plot the measurements along the y-axis.
Fig. 10
Fig. 10 OCT images of human fingertips obtained with our STC probe (a), and with a conventional objective lens (b).
Fig. 11
Fig. 11 OCT ex-vivo image of the airway in the rabbit’s lung (a) and that of the trachea region (b), acquired by our STC probe.

Tables (1)

Tables Icon

Table 1 Specification of the fibers used in our STC probe.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V= 2πa λ NA 2πa n 1 2Δ λ
Δ= n 1 2 n 0 2 2 n 1 2 n 1 n 0 n 1
z R = πn w 0 2 λ
L dB 10 log 10 η=10 log 10 ( 2 w 1 w 2 w 1 2 + w 2 2 ) 2 =20 log 10 ( 2α 1+ α 2 )
L dB =10 log 10 ( η 1 η 2 η N )=20N log 10 ( 2 α 1/N 1+ α 2/N ).
b= n eff 2 n 0 2 n 1 2 n 0 2
N g = N 0 +γ( N 1 N 0 )
δt= L c δ N g = L( N 1 N 0 ) c δγ
η= | E 1 E 2 dxdy | 2 | E 1 dxdy | 2 | E 2 dxdy | 2

Metrics