Abstract

We present outcomes of an imaging experiment using the refractive light sword lens (LSL) as a contact lens in an optical system that serves as a simplified model of the presbyopic eye. The results show that the LSL produces significant improvements in visual acuity of the simplified presbyopic eye model over a wide range of defocus. Therefore, this element can be an interesting alternative for the multifocal contact and intraocular lenses currently used in ophthalmology. The second part of the article discusses possible modifications of the LSL profile in order to render it more suitable for fabrication and ophthalmological applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Model of the light sword intraocular lens: in-vitro comparative studies

Krzysztof Petelczyc, Andrzej Kolodziejczyk, Narcyz Błocki, Anna Byszewska, Zbigniew Jaroszewicz, Karol Kakarenko, Katarzyna Kołacz, Michał Miler, Alejandro Mira-Agudelo, Walter Torres-Sepúlveda, and Marek Rękas
Biomed. Opt. Express 11(1) 40-54 (2020)

Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model

K. Petelczyc, S. Bará, A. Ciro Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek
Opt. Express 19(25) 25602-25616 (2011)

Strehl ratios characterizing optical elements designed for presbyopia compensation

K. Petelczyc, J. Ares García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek
Opt. Express 19(9) 8693-8699 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
    [Crossref] [PubMed]
  2. B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
    [Crossref] [PubMed]
  3. A. Zlotnik, S. Ben Yaish, O. Yehezkel, K. Lahav-Yacouel, M. Belkin, and Z. Zalevsky, “Extended depth of focus contact lenses for presbyopia,” Opt. Lett. 34(14), 2219–2221 (2009).
    [Crossref] [PubMed]
  4. S. Zheng, Z. Wang, Y. Liu, and R. Li, “Aspheric spectacles for correcting presbyopia with myopia and astigmatism,” Appl. Opt. 51(29), 6926–6932 (2012).
    [Crossref] [PubMed]
  5. T. Zhao, A. Liu, Q. Liu, and F. Yu, “Axial intensity distribution analysis for a depth-of-field-extended optical system using a low-frequency binary phase mask,” Appl. Opt. 53(17), 3782–3786 (2014).
    [Crossref] [PubMed]
  6. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44(8), 592 (1954).
    [Crossref]
  7. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
    [Crossref] [PubMed]
  8. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001).
    [Crossref] [PubMed]
  9. J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
    [Crossref] [PubMed]
  10. E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
    [Crossref] [PubMed]
  11. A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
    [Crossref]
  12. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
    [Crossref] [PubMed]
  13. J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
    [Crossref] [PubMed]
  14. K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).
  15. K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
    [Crossref] [PubMed]
  16. A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
    [Crossref] [PubMed]
  17. K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
    [Crossref]
  18. K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
    [Crossref] [PubMed]
  19. J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
    [Crossref] [PubMed]
  20. K. Grabowiecki, “LIGHTSWORDS lens promises to reduce age-related degradation of sight,” http://cordis.europa.eu/news/rcn/122565_en.html , accessed 4/1/15.
  21. A. Valberg, Light Vision Color (John Wiley & Sons, 2005).
  22. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, 2008).
  23. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28(3), 433–454 (1988).
    [Crossref] [PubMed]
  24. J. T. Holladay and Msee, “Visual acuity measurements,” J. Cataract Refract. Surg. 30(2), 287–290 (2004).
    [Crossref] [PubMed]
  25. I. L. Bailey and J. E. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53(11), 740–745 (1976).
    [Crossref] [PubMed]
  26. A. Colenbrander, “Visual standards: Aspects and ranges of vision loss” Report prepared for the 29th International Congress of the International Council of Ophthalmology, Sydney, Australia, 2002.
  27. Z. Zalevsky, S. Ben Yaish, A. Zlotnik, O. Yehezkel, and M. Belkin, “Cortical adaptation and visual enhancement,” Opt. Lett. 35(18), 3066–3068 (2010).
    [Crossref] [PubMed]
  28. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
    [Crossref] [PubMed]
  29. J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
    [Crossref] [PubMed]
  30. J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, “Kinoform Lenses,” Appl. Opt. 9(8), 1883–1887 (1970).
    [PubMed]
  31. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1–3), 43–48 (1995).
    [Crossref]
  32. M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
    [Crossref]

2015 (1)

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

2014 (2)

T. Zhao, A. Liu, Q. Liu, and F. Yu, “Axial intensity distribution analysis for a depth-of-field-extended optical system using a low-frequency binary phase mask,” Appl. Opt. 53(17), 3782–3786 (2014).
[Crossref] [PubMed]

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

2012 (2)

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

S. Zheng, Z. Wang, Y. Liu, and R. Li, “Aspheric spectacles for correcting presbyopia with myopia and astigmatism,” Appl. Opt. 51(29), 6926–6932 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

2009 (2)

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

A. Zlotnik, S. Ben Yaish, O. Yehezkel, K. Lahav-Yacouel, M. Belkin, and Z. Zalevsky, “Extended depth of focus contact lenses for presbyopia,” Opt. Lett. 34(14), 2219–2221 (2009).
[Crossref] [PubMed]

2008 (2)

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

2005 (1)

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

2004 (2)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

J. T. Holladay and Msee, “Visual acuity measurements,” J. Cataract Refract. Surg. 30(2), 287–290 (2004).
[Crossref] [PubMed]

2003 (1)

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[Crossref]

2001 (1)

1995 (1)

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1–3), 43–48 (1995).
[Crossref]

1992 (1)

1991 (1)

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

1990 (1)

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

1988 (1)

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28(3), 433–454 (1988).
[Crossref] [PubMed]

1976 (1)

I. L. Bailey and J. E. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53(11), 740–745 (1976).
[Crossref] [PubMed]

1970 (1)

1954 (1)

Alcón, E.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Ares, J.

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

Ares Garcia, J.

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

Ares García, J.

Artal, P.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Bailey, I. L.

I. L. Bailey and J. E. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53(11), 740–745 (1976).
[Crossref] [PubMed]

Bará, S.

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
[Crossref] [PubMed]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref] [PubMed]

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

Belkin, M.

Ben Yaish, S.

Bull, C. E.

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

Cerviño, A.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Chi, W.

Ciro López, A.

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

Davison, J. A.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

Fernández, E. J.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Fielding, B.

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

Flores, R.

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

Gallego, A. A.

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

García, J. A.

Gemmill, M.

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

George, N.

Gomez García, M.

Gorecki, M.

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[Crossref]

Hannan, S. J.

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

Hirsch, P. M.

Holladay, J. T.

J. T. Holladay and Msee, “Visual acuity measurements,” J. Cataract Refract. Surg. 30(2), 287–290 (2004).
[Crossref] [PubMed]

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

Jaroszewicz, Z.

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
[Crossref] [PubMed]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[Crossref] [PubMed]

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref] [PubMed]

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

Jordan, J. A.

Kakarenko, K.

Keehn, G. C.

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

Kolodziejczyk, A.

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
[Crossref] [PubMed]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[Crossref] [PubMed]

J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992).
[Crossref] [PubMed]

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

Lahav-Yacouel, K.

Lesem, L. B.

Li, R.

Liu, A.

Liu, Q.

Liu, Y.

Lopez, A. C.

Lovie, J. E.

I. L. Bailey and J. E. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53(11), 740–745 (1976).
[Crossref] [PubMed]

Lynn, M. J.

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

Manzanera, S.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Marín, J. M.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

McLeod, J. H.

Mikula, G.

Mirabet, S.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Montés-Micó, R.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

Msee,

J. T. Holladay and Msee, “Visual acuity measurements,” J. Cataract Refract. Surg. 30(2), 287–290 (2004).
[Crossref] [PubMed]

Pelouskova, M.

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

Petelczyc, K.

K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, “Imaging with extended focal depth by means of the refractive light sword optical element,” Opt. Express 16(22), 18371–18378 (2008).
[Crossref] [PubMed]

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[Crossref] [PubMed]

Prokopowicz, C.

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[Crossref]

Rekas, M.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

Schallhorn, S. C.

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

Simpson, M. J.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Sochacki, J.

Stankiewicz, A.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

Sypek, M.

K. Petelczyc, J. A. García, S. Bará, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Strehl ratios characterizing optical elements designed for presbyopia compensation,” Opt. Express 19(9), 8693–8699 (2011).
[Crossref] [PubMed]

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

K. Petelczyc, S. Bará, A. C. Lopez, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Imaging properties of the light sword optical element used as a contact lens in a presbyopic eye model,” Opt. Express 19(25), 25602–25616 (2011).
[Crossref] [PubMed]

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007).
[Crossref] [PubMed]

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[Crossref]

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1–3), 43–48 (1995).
[Crossref]

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

Van Rooy, D. L.

Venter, J. A.

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

Villegas, E. A.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Wang, Z.

Waring, G. O.

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

Williams, D. R.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28(3), 433–454 (1988).
[Crossref] [PubMed]

Yago, I.

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Yehezkel, O.

Yu, F.

Zalevsky, Z.

Zelichowska, B.

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

Zhao, T.

Zheng, S.

Zlotnik, A.

Am. J. Ophthalmol. (1)

E. A. Villegas, E. Alcón, S. Mirabet, I. Yago, J. M. Marín, and P. Artal, “Extended depth of focus with induced spherical aberration in light-adjustable intraocular lenses,” Am. J. Ophthalmol. 157(1), 142–149 (2014).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

I. L. Bailey and J. E. Lovie, “New design principles for visual acuity letter charts,” Am. J. Optom. Physiol. Opt. 53(11), 740–745 (1976).
[Crossref] [PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (1)

J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, and B. Fielding, “The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,” Arch. Ophthalmol. 109(1), 70–76 (1991).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (4)

J. T. Holladay and Msee, “Visual acuity measurements,” J. Cataract Refract. Surg. 30(2), 287–290 (2004).
[Crossref] [PubMed]

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

B. Żelichowska, M. Rękas, A. Stankiewicz, A. Cerviño, and R. Montés-Micó, “Apodized diffractive versus refractive multifocal intraocular lenses: Optical and visual evaluation,” J. Cataract Refract. Surg. 34(12), 2036–2042 (2008).
[Crossref] [PubMed]

J. A. Venter, M. Pelouskova, C. E. Bull, S. C. Schallhorn, and S. J. Hannan, “Visual outcomes and patient satisfaction with a rotational asymmetric refractive intraocular lens for emmetropic presbyopia,” J. Cataract Refract. Surg. 41(3), 585–593 (2015).
[Crossref] [PubMed]

J. Eur. Opt. Soc. Rapid Publ. (1)

K. Petelczyc, S. Bará, A. Ciro López, Z. Jaroszewicz, K. Kakarenko, A. Kolodziejczyk, and M. Sypek, “Contrast transfer properties of the light sword optical element designed for presbyopia compensation,” J. Eur. Opt. Soc. Rapid Publ. 6, 11053 (2011).
[Crossref]

J. Mod. Opt. (1)

A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, and M. Sypek, “The light sword optical element - a new diffraction structure with extended depth of focus,” J. Mod. Opt. 37(8), 1283–1286 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vis. (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye’s optical aberrations,” J. Vis. 4(4), 281–287 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun. 116(1–3), 43–48 (1995).
[Crossref]

Opt. Eng. (1)

M. Sypek, C. Prokopowicz, and M. Gorecki, “Image multiplying and high-frequency oscillations effects in the Fresnel region light propagation simulation,” Opt. Eng. 42(11), 3158–3164 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optom. Vis. Sci. (2)

A. A. Gallego, S. Bará, Z. Jaroszewicz, and A. Kolodziejczyk, “Visual Strehl performance of IOL designs with extended depth of focus,” Optom. Vis. Sci. 89(12), 1702–1707 (2012).
[Crossref] [PubMed]

J. Ares, R. Flores, S. Bará, and Z. Jaroszewicz, “Presbyopia compensation with a quartic axicon,” Optom. Vis. Sci. 82(12), 1071–1078 (2005).
[Crossref] [PubMed]

Photon. Lett. Poland (1)

K. Petelczyc, J. Ares Garcia, S. Bará, Z. Jaroszewicz, A. Kolodziejczyk, and M. Sypek, “Presbyopia compensation with a light sword optical element of a variable diameter,” Photon. Lett. Poland 1, 55–57 (2009).

Vision Res. (1)

D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28(3), 433–454 (1988).
[Crossref] [PubMed]

Other (4)

A. Colenbrander, “Visual standards: Aspects and ranges of vision loss” Report prepared for the 29th International Congress of the International Council of Ophthalmology, Sydney, Australia, 2002.

K. Grabowiecki, “LIGHTSWORDS lens promises to reduce age-related degradation of sight,” http://cordis.europa.eu/news/rcn/122565_en.html , accessed 4/1/15.

A. Valberg, Light Vision Color (John Wiley & Sons, 2005).

H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Vol. 4, Survey of Optical Instruments (Wiley-VCH, 2008).

Supplementary Material (2)

» Media 1: PDF (17232 KB)     
» Media 2: MOV (16216 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Shape of the light sword lens (LSL) element.
Fig. 2
Fig. 2 Samples of polymethylmethacrylate light sword lenses (LSLs) fabricated by injection technology.
Fig. 3
Fig. 3 Profile of the light sword lens (LSL) sample used, measured by the profilometer Veeco Wyko NT9300 with a linear color scale (blue = 0 μm; red = 50 μm).
Fig. 4
Fig. 4 The numerical interferogram of the ideal light sword lens (LSL) (left) and the interferogram of the LSL sample used, obtained with a Mach-Zehnder interferometer using monochromatic light with λ = 632.8 nm.
Fig. 5
Fig. 5 Optical arrangement for imaging using the simplified presbyopic eye and the light sword lens (LSL) element.
Fig. 6
Fig. 6 Relative comparison of ETDRS charts imaged experimentally by the simplified presbyopic eye (iris diameter: 3 mm) without (left column) and with (middle column) the light sword lens (LSL). See Media 1 for high resolution.
Fig. 7
Fig. 7 High-resolution movie (Media 2) of relative comparison of the simulated ETDRS chart images formed by the simplified presbyopic eye alone (left image) and with the light sword lens (LSL) added (right image). Counters of the defocus values and related object distances rescaled to the Gullstrand eye are given in the center of the image.
Fig. 8
Fig. 8 Assessment of visual acuity (VA) of the simplified presbyopic eye for different values of defocus, rescaled to the Gullstrand eye. Red marks correspond to tests without the light sword lens (LSL). Black marks correspond to tests with the LSL. The blue line corresponds to the real normal eye with 3 mm diameter pupil (based on [29]).
Fig. 9
Fig. 9 The light sword lens (LSL) with phase discontinuity (Θ = 0), and modified LSLs without phase discontinuity. Angular sectors of oppositely growing dioptric power with widths Θ = π/4 and π/2, respectively, were implemented in the second and third cases. Elements are presented in the form of a kinoform [30].
Fig. 10
Fig. 10 Simulated output images formed by the light sword lens (LSL), as well as the modified LSL with discontinuities removed.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δl( r,θ )= l max ΔDθ r 2 4π( n1 ) ,
VA= 10 logMAR .
Δl( r,θ;Θ )={ l max ΔDθ r 2 2( 2πΘ )( n1 ) for0<θ2πΘ l max ΔD r 2 ( 2πθ ) 2Θ( n1 ) for2πΘ<θ2π

Metrics