Abstract

In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with photothermal OCT has been derived. The phase-resolved thermal expansion detection algorithm without motion artifact enables in vivo detection of photothermal effect. Phantom imaging with a blood phantom and in vivo human skin imaging are conducted. A phantom with guinea-pig blood as absorber has been scanned by the photothermal OCT system to prove the concept of cross-sectional absorption agent imaging. An in vivo human skin measurement is also performed with endogenous absorption agents.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cross-correlation photothermal optical coherence tomography with high effective resolution

Peijun Tang, Shaojie Liu, Junbo Chen, Zhiling Yuan, Bingkai Xie, Jianhua Zhou, and Zhilie Tang
Opt. Lett. 42(23) 4974-4977 (2017)

In vivo photothermal optical coherence tomography of gold nanorod contrast agents

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala
Biomed. Opt. Express 3(11) 2881-2895 (2012)

Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

Maryse Lapierre-Landry, Jason M. Tucker-Schwartz, and Melissa C. Skala
Biomed. Opt. Express 7(7) 2607-2622 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
    [Crossref] [PubMed]
  2. C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4, 1269–1284 (2013).
    [Crossref] [PubMed]
  3. J. Yi, Q. Wei, W. Liu, V. Backman, and H. F. Zhang, “Visible-light optical coherence tomography for retinal oximetry,” Opt. Lett. 38, 1796–1798 (2013).
    [Crossref] [PubMed]
  4. D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of Melanin,” Opt. Express 18, 12399–12410 (2010).
    [Crossref] [PubMed]
  5. T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
    [Crossref] [PubMed]
  6. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
    [Crossref] [PubMed]
  7. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
    [Crossref] [PubMed]
  8. Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
    [Crossref] [PubMed]
  9. T.-T. Chi, Y.-C. Tu, M.-J. Li, C.-K. Chu, Y.-W. Chang, C.-K. Yu, Y.-W. Kiang, and C. C. Yang, “Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring,” Opt. Express 22, 11754–11769 (2014).
    [Crossref] [PubMed]
  10. R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831 (2011).
    [Crossref] [PubMed]
  11. J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
    [Crossref] [PubMed]
  12. J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
    [Crossref] [PubMed]
  13. C. Zhou, T.-H. Tsai, D. C. Adler, H.-C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700–702 (2010).
    [Crossref] [PubMed]
  14. A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1, 2–16 (2010).
    [Crossref]
  15. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3, 2881–2895 (2012).
    [Crossref] [PubMed]
  16. P. Xiao, Q. Li, Y. Joo, J. Nam, S. Hwang, J. Song, S. Kim, C. Joo, and K. H. Kim, “Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 38, 4429–4432 (2013).
    [Crossref] [PubMed]
  17. J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett. 37, 872–874 (2012).
    [Crossref] [PubMed]
  18. H. M. Subhash, H. Xie, J. W. Smith, and O. J. T. McCarty, “Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 37, 981–983 (2012).
    [Crossref] [PubMed]
  19. S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
    [Crossref] [PubMed]
  20. G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
    [Crossref] [PubMed]
  21. M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
    [Crossref] [PubMed]
  22. H. S. Carslaw, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, 1986).
  23. J. Roider and R. Birngruber, “Solution of the heat conduction equation,” in Optical-Thermal Response of Laser-Irradiated Tissue, 1st ed. A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 1995), pp. 385–409.
    [Crossref]
  24. S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, (John Wiley & Sons, 1996).
  25. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
    [Crossref] [PubMed]
  26. J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
    [Crossref] [PubMed]
  27. V. D. Kupradze, Three-Dimensional Problems of Elasticity and Thermoelasticity (Elsevier, 1979).
  28. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
    [Crossref] [PubMed]
  29. S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
    [Crossref] [PubMed]
  30. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
    [Crossref] [PubMed]
  31. International Electrotechnical Commission, Safety of laser products – Part 1: Equipment classification and requirements, (International Electrotechnical Commission, 2007), 2nd ed.
  32. J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
    [Crossref] [PubMed]
  33. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [Crossref] [PubMed]
  34. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [Crossref] [PubMed]
  35. N. C. Jain, Essentials of Veterinary Hematology (Lea & Febiger, 1993).
  36. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
    [Crossref] [PubMed]
  37. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
    [Crossref] [PubMed]
  38. M. Skobe and M. Detmar, “Structure, Function, and Molecular Control of the Skin Lymphatic System,” J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).
    [Crossref]
  39. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
    [Crossref] [PubMed]
  40. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
    [Crossref] [PubMed]
  41. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20, 21385–21399 (2012).
    [Crossref] [PubMed]
  42. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
    [Crossref] [PubMed]
  43. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
    [Crossref]
  44. D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
    [Crossref]
  45. S. Prahl, “Optical Absorption of Hemoglobin,” (1999). http://omlc.org/spectra/hemoglobin/index.html .
  46. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
    [Crossref]

2014 (2)

2013 (5)

2012 (8)

C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, and R. A. Leitgeb, “In situ structural and microangiographic assessment of human skin lesions with high-speed OCT,” Biomed. Opt. Express 3, 2636–2646 (2012).
[Crossref] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20, 21385–21399 (2012).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, T. Hong, D. C. Colvin, Y. Xu, and M. C. Skala, “Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes,” Opt. Lett. 37, 872–874 (2012).
[Crossref] [PubMed]

H. M. Subhash, H. Xie, J. W. Smith, and O. J. T. McCarty, “Optical detection of indocyanine green encapsulated biocompatible poly (lactic-co-glycolic) acid nanoparticles with photothermal optical coherence tomography,” Opt. Lett. 37, 981–983 (2012).
[Crossref] [PubMed]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3, 2881–2895 (2012).
[Crossref] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[Crossref] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[Crossref] [PubMed]

2011 (3)

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831 (2011).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
[Crossref] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[Crossref] [PubMed]

2008 (5)

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[Crossref] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

2006 (1)

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
[Crossref] [PubMed]

2005 (2)

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

2004 (1)

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

2003 (1)

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

2000 (1)

M. Skobe and M. Detmar, “Structure, Function, and Molecular Control of the Skin Lymphatic System,” J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).
[Crossref]

1999 (1)

D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
[Crossref]

1996 (1)

M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
[Crossref] [PubMed]

1995 (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Adler, D. C.

Akkin, T.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Alex, A.

An, L.

Applegate, B. E.

Backman, V.

Baranov, S.

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Berclaz, C.

Bialkowski, S.

S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, (John Wiley & Sons, 1996).

Birngruber, R.

J. Roider and R. Birngruber, “Solution of the heat conduction equation,” in Optical-Thermal Response of Laser-Irradiated Tissue, 1st ed. A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 1995), pp. 385–409.
[Crossref]

Blatter, C.

Boas, D. A.

Bocchio, N. L.

Boer, J. F. d.

Boppart, S. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

Bouwens, A.

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Carslaw, H. S.

H. S. Carslaw, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, 1986).

Cense, B.

Chang, Y.-W.

Chi, T.-T.

Chu, C.-K.

Cilingiroglu, M.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

Cohen, D. W.

Colvin, D. C.

Connolly, J. L.

Crow, M. J.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[Crossref] [PubMed]

Dave, D. P.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

Davé, D. P.

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Detmar, M.

M. Skobe and M. Detmar, “Structure, Function, and Molecular Control of the Skin Lymphatic System,” J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).
[Crossref]

Do, D.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

Drexler, W.

Dunn, A. K.

Duong, T. Q.

Duvall, C. L.

Eckert, J.

Fabritius, T.

Feldman, M. D.

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1, 2–16 (2010).
[Crossref]

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

Fleming, C. P.

Fujimoto, J. G.

Gardecki, J. A.

Gemert, M. J. C. v.

M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Gibson, M. I.

Goulley, J.

Grajciar, B.

Guan, G.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

Halpern, E. F.

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Hong, T.

Hong, Y.-J.

Huang, S.-W.

Huang, Z.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

Huber, R.

Hwang, S.

Itoh, M.

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[Crossref] [PubMed]

Jacob, D.

Jahan, I.

Jaillon, F.

Jain, N. C.

N. C. Jain, Essentials of Veterinary Hematology (Lea & Febiger, 1993).

Jiang, J. Y.

Johnston, K. P.

Joo, C.

Joo, Y.

Ju, M. J.

Jung, Y.

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

Kalkman, J.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Kang, H. W.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

Kazmi, S.

Kemp, N.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

Kernick, D. P.

D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
[Crossref]

Kiang, Y.-W.

Kiel, J. W.

Kim, J.

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
[Crossref] [PubMed]

Kim, K. H.

Kim, S.

Koch, E.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Kupradze, V. D.

V. D. Kupradze, Three-Dimensional Problems of Elasticity and Thermoelasticity (Elsevier, 1979).

Kuranov, R.

Kuranov, R. V.

Kurokawa, K.

Lasser, T.

Lee, B. H.

Lee, H.-C.

Lee, J.

Leitgeb, R. A.

Li, M.-J.

Li, Q.

Liu, W.

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Lucassen, G. W.

M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
[Crossref] [PubMed]

Ma, L. L.

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Makita, S.

Mancuso, J. J.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

McCarty, O. J. T.

McElroy, A. B.

Meyer, T. A.

Milner, T. E.

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831 (2011).
[Crossref] [PubMed]

A. S. Paranjape, R. Kuranov, S. Baranov, L. L. Ma, J. W. Villard, T. Wang, K. V. Sokolov, M. D. Feldman, K. P. Johnston, and T. E. Milner, “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomed. Opt. Express 1, 2–16 (2010).
[Crossref]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
[Crossref] [PubMed]

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Min, E. J.

Miura, M.

Mondelblatt, A.

Mujat, M.

Nam, J.

Oh, J.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
[Crossref] [PubMed]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Pache, C.

Paranjape, A. S.

Park, B. H.

Patil, C. A.

Pierce, M. C.

Qin, J.

Reif, R.

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

Roider, J.

J. Roider and R. Birngruber, “Solution of the heat conduction equation,” in Optical-Thermal Response of Laser-Irradiated Tissue, 1st ed. A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 1995), pp. 385–409.
[Crossref]

Rylander, H. G.

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Sanghi, P.

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

Santschi, C.

Sasaki, K.

Sethuraman, S.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

Shelton, R. L.

Shore, A. C.

D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
[Crossref]

Skala, M. C.

Skobe, M.

M. Skobe and M. Detmar, “Structure, Function, and Molecular Control of the Skin Lymphatic System,” J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).
[Crossref]

Smith, J. W.

Sokolov, K. V.

Song, J.

Song, S.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Subhash, H. M.

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Tearney, G. J.

C. P. Fleming, J. Eckert, E. F. Halpern, J. A. Gardecki, and G. J. Tearney, “Depth resolved detection of lipid using spectroscopic optical coherence tomography,” Biomed. Opt. Express 4, 1269–1284 (2013).
[Crossref] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Telenkov, S. A.

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Tooke, J. E.

D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
[Crossref]

Tsai, T.-H.

Tu, Y.-C.

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Tucker-Schwartz, J. M.

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[Crossref] [PubMed]

van Leeuwen, T. G.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Villard, J. W.

Villiger, M.

Walther, J.

Wang, R. K.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[Crossref] [PubMed]

Wang, T.

Wang, Y.

Wax, A.

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[Crossref] [PubMed]

Wei, Q.

Weingast, J.

Weiss, N.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Welch, A. J.

M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
[Crossref] [PubMed]

Wieser, W.

Wu, W.

Xiao, P.

Xie, H.

Xu, Y.

Yang, C. C.

Yasuno, Y.

Yi, J.

Youn, J.-I.

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Yu, C.-K.

Yun, S.-H.

Zeng, Y.

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

Zhang, H. F.

Zhou, C.

Zhu, B.

Biomed. Opt. Express (4)

IEEE Trans. Med. Imaging (1)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography,” IEEE Trans. Med. Imaging 28, 814–821 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

G. Guan, R. Reif, Z. Huang, and R. K. Wang, “Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography,” J. Biomed. Opt. 16, 126003 (2011).
[Crossref] [PubMed]

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18, 121505 (2013).
[Crossref] [PubMed]

J. Kim, J. Oh, and T. E. Milner, “Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography,” J. Biomed. Opt. 11, 041122 (2006).
[Crossref] [PubMed]

J. Oh, M. D. Feldman, J. Kim, P. Sanghi, D. Do, J. J. Mancuso, N. Kemp, M. Cilingiroglu, and T. E. Milner, “Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography,” J. Biomed. Opt. 13, 054006 (2008).
[Crossref] [PubMed]

J. Investig. Dermatol. Symp. Proc. (1)

M. Skobe and M. Detmar, “Structure, Function, and Molecular Control of the Skin Lymphatic System,” J. Investig. Dermatol. Symp. Proc. 5, 14–19 (2000).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Lasers Surg. Med. (2)

J. Kim, J. Oh, H. W. Kang, M. D. Feldman, and T. E. Milner, “Photothermal response of superparamagnetic iron oxide nanoparticles,” Lasers Surg. Med. 40, 415–421 (2008).
[Crossref] [PubMed]

T. Akkin, D. P. Davé, J.-I. Youn, S. A. Telenkov, H. G. Rylander, and T. E. Milner, “Imaging tissue response to electrical and photothermal stimulation with nanometer sensitivity,” Lasers Surg. Med. 33, 219–225 (2003).
[Crossref] [PubMed]

Nano Lett. (2)

M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8, 3461–3467 (2008).
[Crossref] [PubMed]

Y. Jung, R. Reif, Y. Zeng, and R. K. Wang, “Three-Dimensional High-Resolution Imaging of Gold Nanorods Uptake in Sentinel Lymph Nodes,” Nano Lett. 11, 2938–2943 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nat. Med. 1, 970–972 (1995).
[Crossref] [PubMed]

Opt. Express (13)

D. Jacob, R. L. Shelton, and B. E. Applegate, “Fourier domain pump-probe optical coherence tomography imaging of Melanin,” Opt. Express 18, 12399–12410 (2010).
[Crossref] [PubMed]

T.-T. Chi, Y.-C. Tu, M.-J. Li, C.-K. Chu, Y.-W. Chang, C.-K. Yu, Y.-W. Kiang, and C. C. Yang, “Photothermal optical coherence tomography based on the localized surface plasmon resonance of Au nanoring,” Opt. Express 22, 11754–11769 (2014).
[Crossref] [PubMed]

R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, “In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT,” Opt. Express 19, 23831 (2011).
[Crossref] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16, 4376–4393 (2008).
[Crossref] [PubMed]

J. Walther and E. Koch, “Transverse motion as a source of noise and reduced correlation of the Doppler phase shift in spectral domain OCT,” Opt. Express 17, 19698–19713 (2009).
[Crossref] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[Crossref] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[Crossref] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[Crossref] [PubMed]

S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. d. Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13, 3931–3944 (2005).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18, 8220–8228 (2010).
[Crossref] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, and T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20, 21385–21399 (2012).
[Crossref] [PubMed]

J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express 20, 22262–22277 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Pflügers Arch. (1)

D. P. Kernick, J. E. Tooke, and A. C. Shore, “The biological zero signal in laser doppler fluximetry – origins and practical implications,” Pflügers Arch. 437, 624–631 (1999).
[Crossref]

Phys. Med. Biol. (2)

S. A. Telenkov, D. P. Dave, S. Sethuraman, T. Akkin, and T. E. Milner, “Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue,” Phys. Med. Biol. 49, 111–119 (2004).
[Crossref] [PubMed]

M. J. C. v. Gemert, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: II. Distributions of time constants and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381 (1996).
[Crossref] [PubMed]

Phys. Rev. E (1)

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography,” Phys. Rev. E 88, 042312 (2013).
[Crossref]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Other (7)

V. D. Kupradze, Three-Dimensional Problems of Elasticity and Thermoelasticity (Elsevier, 1979).

N. C. Jain, Essentials of Veterinary Hematology (Lea & Febiger, 1993).

H. S. Carslaw, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, 1986).

J. Roider and R. Birngruber, “Solution of the heat conduction equation,” in Optical-Thermal Response of Laser-Irradiated Tissue, 1st ed. A. J. Welch and M. J. C. v. Gemert, eds. (Springer, 1995), pp. 385–409.
[Crossref]

S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis, (John Wiley & Sons, 1996).

International Electrotechnical Commission, Safety of laser products – Part 1: Equipment classification and requirements, (International Electrotechnical Commission, 2007), 2nd ed.

S. Prahl, “Optical Absorption of Hemoglobin,” (1999). http://omlc.org/spectra/hemoglobin/index.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the photothermal OCT system. (a) The schema of the OCT engine and (b) the configuration of probe. Light from the source split and coupled by 90/10 fiber coupler where 90% portion directed to probe arm. FBG: fiber-Bragg grating, BPR: balanced photoreceiver, ND: neutral density filter, PD: photodetector, PC: polarization controller, DM: shortpass dichroic mirror, and LPF: lowpass filter.
Fig. 2
Fig. 2 Timing of the excitation and detection. GATE: the gate signal turns on and off acquisition, TRIG: A-scan trigger, GALVO: the waveform that controls the fast scanning galvanometer mirror, EXCT.: the waveform to modulate the photothermal excitation diode laser.
Fig. 3
Fig. 3 The flow of the photothermal OCT processing. (a) A schematic diagram of scanning and excitation waveforms. (b) A raw 2D phase map of one M-scan. The signal processing described in Section 3.3 is applied ((c)–(g)) to obtain photothermal image.
Fig. 4
Fig. 4 Photothermal signals in M-mode scan. Phase derivatives of two consecutive M-scans (a) when the excitation laser is on and (b) after the laser is turned off. (c) Temporal profile of photothermal signal. Scale bars are 500 μm in tissue. Each profile obtained at a certain depth of the porcine liver (black arrow).
Fig. 5
Fig. 5 The images are compared. 213 us separation, 34.9 um separation, 235 Hz modulation. For quantitative comparison, normalization [Eq. (21)] was not applied. Scale bars are 500 μm in tissue.
Fig. 6
Fig. 6 OCT (a, b) and photothermal OCT (c, d) images of a phantom made of gelatin and soybean oil emulsion with guinea-pig blood. The left (a, c) and right (b, d) columns show images without and with excitation, respectively. Scale bars are 500 μm in tissue.
Fig. 7
Fig. 7 Volumes of OCT (first row) and photothermal OCT (second and third rows) images of human skin. Images in the the fourth row are images of Doppler blood flow for comparison. Two volumes around a mole (a–h) and of normal skin (i–p) are obtained. En-face projections (left) indicate the locations of the cross-sectional images (left).
Fig. 8
Fig. 8 Simulated axial fluence profile of the photothermal effect of hemoglobin in skin for 400 nm (blue line) and 630 nm (red line) wavelengths.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( r , t ) = 0 t exp [ | r r | 2 4 κ ( t t ) ] [ 4 π ( t t ) ] 3 / 2 q ˙ ( r , t ) ρ c V d t d x d y d z ,
q ˙ ( r , t ) = Y H 2 P ( t ) π w E 2 e 2 ( x x E ) 2 + ( y y E ) 2 w E 2 μ α ( r ) e 0 z μ ( x , y , l ) d l ,
Δ T ( r , t ) = Y H ρ c V 2 π w E 2 0 t P ( t ) exp [ | r r | 2 4 κ ( t t ) ] [ 4 π κ ( t t ) ] 3 / 2 e 2 ( x x E ) 2 + ( y y E ) 2 w E 2 × μ α ( r ) e z 0 z μ ( x , y , l ) d l d t d x d y d z .
Δ T δ ( r , t ) = Y H ρ c V 2 π w E 2 e 2 ( x a x E ) 2 + ( y a y E ) 2 w E 2 μ α e z 0 z a μ ( x a , y a , l ) d l 0 t P ( t ) exp [ | r r a | 2 4 κ ( t t ) ] [ 4 π κ ( t t ) ] 3 / 2 d t ,
Γ ( x , y , z , t ) = η | E ref | | E s ( x , y , z , t ) | e i ϕ ( x , y , z , t ) ,
Δ t ϕ ( z , t ; Δ t ) 2 k c = [ z 0 ( t + Δ t ) z ( t + Δ t ) n s ( l , t + Δ t ) d l + n o z 0 ( t + Δ t ) ] [ z 0 ( t ) z ( t ) n s ( l , t ) d l + n o z 0 ( t ) ] ,
Δ z Δ t ϕ ( z , t ; Δ z , Δ t ) 2 k c = z a ( t + Δ t ) z b ( t + Δ t ) n s ( l , t + Δ t ) d l z a ( t ) z b ( t ) n s ( l , t ) d l ,
Δ z Δ t ϕ ( z , t ; Δ z , Δ t ) 2 k c Δ z = n s ¯ ( z , t ) Δ t w ( z b , t ; Δ t ) Δ t w ( z a , t ; Δ t ) Δ z + n s ¯ ( z , t + Δ t ) n s ¯ ( z , t ) ,
ε i j = 1 + ν E σ i j + δ i j ( ν E σ k k + α Δ T ) ,
Δ t w ( z b , t ; Δ t ) Δ t w ( z a , t ; Δ t ) Δ z Δ t ε z ( z , t ) .
Δ z Δ t ϕ ( z , t ; Δ z , Δ t ) 2 k c Δ z = [ α n s ( z , t ) + d n s d T ] Δ t Δ T ( z , t ; Δ t ) + n s ( z , t ) Δ t σ z ν ( Δ t σ x + Δ t σ y ) E ,
H t ( x l , z m , t n ) j = s s Γ * ( x l , z m + j , t n ) Γ ( x l , z m + j , t n + Δ n δ t ) ,
H t , z ( x l , z m , t n ) H t * ( x l , z m Δ m / 2 , t n ) H t ( x l , z m + Δ m / 2 , t n ) .
H t , z ( x l , z m ) n = 0 N Δ n 1 M ( x l , z m , t n ) H t , z ( x l , z m , t n ) ,
M = { 1 | H t , z | > θ 0 otherwise .
Δ z Δ t ϕ ( x l , z m ; Δ m δ z , Δ n δ t ) arg [ H t , z ( x l , z m ) ] ,
Δ z Δ t ϕ ( x l , z m ) Δ z Δ t Φ ( ν L , z m ) .
Δ z Δ t Φ ˜ ( ν L , z m ) { w ( ν L f m ) Δ z Δ t Φ ( ν L f m , z m ) 0 < ν L w ( ν L + f m ) Δ z Δ t Φ ( ν L + f m , z m ) ν L 0 ,
Δ z Δ t Φ ˜ ( ν L , z m ) 1 Δ z Δ t ϕ ˜ ( x l , z m ) .
I ph ( x l , z m ) Re [ Δ z Δ t ϕ ˜ ( x l , z m ) ] Δ m δ z Δ n δ t .
ϕ = ϕ ( ph ) ( x , z , t ) + ϕ ( b ) ( x , t ) + ϕ ( tx ) ( x , z ) + ϕ ( bf ) ( x , z , t ) ,
2 ϕ ( z , t ) z t = 2 ϕ ( ph ) ( z , t ) z t + 2 ϕ ( bf ) ( z , t ) z t .
ϕ t , z ¯ [ x ( t ) , z ] | f = f m = ϕ t , z ( ph ) ¯ [ x ( t ) , z ] | f = f m .
Δ z Δ t ϕ ( x l , z m ) = arg [ H t , z ( x l , z m ) ] Var [ arg [ H t , z ( x l , z m , t n ) ] M ( x l , z m , t n ) ] .
P ( t ) = { P ( t τ ) 0 ( t > τ )
Δ T ( r , t ) t { P ( 4 π κ t ) 3 / 2 exp ( | r | 2 4 κ t ) ( t τ ) P ( 4 π κ ) 3 / 2 [ 1 t 3 / 2 exp ( | r | 2 4 κ t ) 1 ( t τ ) 3 / 2 exp ( | r | 2 4 κ ( t τ ) ) ] ( t > τ )
f PhTh ( z ) μ a ( agent ) I 0 exp [ ( μ s ( skin ) + μ a ( skin ) ) z ] ,

Metrics