Abstract

The effect of carbon nanostructures such as graphene (G), graphene oxide (GO) and nanodiamond (ND) on the spectral properties of Rhodamine 6G (Rd6G) emission due to the laser induced fluorescence (LIF) was investigated. It is shown that the addition of carbon nano- structures lead to sensible Red/Blue shifts which depend on the optical properties and surface functionality of nanoparticles. The current theories such as resonance energy transfer (RET), fluorescence quenching and photon propagation in scattering media support the experimental findings. Stern-Volmer curves for dynamic and static quenching of Rd6G molecules embedded with G, GO and nanodiamond are correlated with spectral shifts. Furthermore, time evolution of the spectral shift contributes to determine loading/release rates of fluorescent species with large S-parameter on the given nano-carriers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence properties of doxorubicin coupled carbon nanocarriers

Najmeh Sadat Hosseini Motlagh, Parviz Parvin, Mitra Refahizadeh, and Ali Bavali
Appl. Opt. 56(26) 7498-7503 (2017)

Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour
Appl. Opt. 53(24) 5398-5409 (2014)

Angular distribution of laser-induced fluorescence emission of active dyes in scattering media

Ali Bavali, Parviz Parvin, Mohammad Tavassoli, and Mohammad Reza Mohebbifar
Appl. Opt. 57(7) B32-B38 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. S. Thakor and S. S. Gambhir, “Nanooncology: The future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
    [Crossref] [PubMed]
  2. X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
    [Crossref] [PubMed]
  3. K. Y. Win and S. S. Feng, “In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation,” Biomaterials 27(10), 2285–2291 (2006).
    [Crossref] [PubMed]
  4. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat. Rev. Cancer 5(3), 161–171 (2005).
    [Crossref] [PubMed]
  5. K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
    [Crossref] [PubMed]
  6. H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
    [Crossref] [PubMed]
  7. X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
    [Crossref]
  8. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
    [Crossref] [PubMed]
  9. S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
    [Crossref]
  10. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  11. C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
    [Crossref] [PubMed]
  12. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
    [Crossref] [PubMed]
  13. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
    [Crossref] [PubMed]
  14. X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
    [Crossref]
  15. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
    [Crossref] [PubMed]
  16. L. Feng and Z. Liu, “Graphene in biomedicine: opportunities and challenges,” Nanomedicine (Lond) 6(2), 317–324 (2011).
    [Crossref] [PubMed]
  17. L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
    [Crossref] [PubMed]
  18. Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
    [Crossref] [PubMed]
  19. A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
    [PubMed]
  20. S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
    [Crossref]
  21. A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
    [Crossref]
  22. A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
    [Crossref] [PubMed]
  23. Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
    [Crossref] [PubMed]
  24. M. Keraji, F. H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” in Clinical and Biomedical Spectroscopy and Imaging III, V. Deckert and N. Ramanujam, eds., Vol. 8798 of SPIE Proceedings (Optical Society of America, 2013), paper 87980A.
  25. M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
    [Crossref] [PubMed]
  26. W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).
  27. A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
    [Crossref] [PubMed]
  28. X. F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
    [Crossref]
  29. A. Wojcik and P. V. Kamat, “Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D,” ACS Nano 4(11), 6697–6706 (2010).
    [Crossref] [PubMed]
  30. Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
    [Crossref]
  31. S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
    [Crossref] [PubMed]
  32. X.-F. Zhang and F. Li, “Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence,” J. Photochem. Photobiol. Chem. 246(15), 8–15 (2012).
    [Crossref]
  33. R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
    [Crossref]
  34. R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a dye molecule to graphene,” J. Chem. Phys. 129(5), 054703 (2008).
    [Crossref] [PubMed]
  35. R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys. 130(8), 086101 (2009).
    [Crossref] [PubMed]
  36. S. A. Ahmed, Z. W. Zang, K. M. Yoo, M. A. Ali, and R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33(13), 2746–2750 (1994).
    [Crossref] [PubMed]
  37. S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
    [Crossref]
  38. A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/Blue Spectral Shifts of Laser-Induced Fluorescence Emission Due to Different Nanoparticle Suspensions in Various Dye Solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
    [Crossref] [PubMed]
  39. K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A. 204(1078), 406–423 (1950).
    [Crossref]
  40. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  41. K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B Condens. Matter 50(1), 93–98 (1994).
    [Crossref] [PubMed]
  42. F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
    [Crossref]
  43. C. F. Bohren and D. R. Huffmann, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).
  44. F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
    [Crossref]
  45. J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
    [Crossref]
  46. K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
    [Crossref]
  47. M. A. Ali, J. Moghaddasi, and S. A. Ahmed, “Optical properties of cooled rhodamine B in ethanol,” J. Opt. Soc. Am. B. 8(9), 1807–1810 (1991).
    [Crossref]
  48. R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
    [Crossref] [PubMed]
  49. A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated Rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
    [Crossref]
  50. D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
    [Crossref] [PubMed]
  51. H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
    [Crossref] [PubMed]
  52. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref] [PubMed]
  53. A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
    [Crossref]
  54. J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
    [Crossref]
  55. S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
    [Crossref]
  56. G. Gomez-Santos and T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011).
    [Crossref]

2014 (4)

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/Blue Spectral Shifts of Laser-Induced Fluorescence Emission Due to Different Nanoparticle Suspensions in Various Dye Solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
[Crossref] [PubMed]

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

2013 (4)

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

A. S. Thakor and S. S. Gambhir, “Nanooncology: The future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

2012 (7)

S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
[Crossref]

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

X.-F. Zhang and F. Li, “Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence,” J. Photochem. Photobiol. Chem. 246(15), 8–15 (2012).
[Crossref]

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

2011 (8)

Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
[Crossref]

G. Gomez-Santos and T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011).
[Crossref]

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

X. F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

L. Feng and Z. Liu, “Graphene in biomedicine: opportunities and challenges,” Nanomedicine (Lond) 6(2), 317–324 (2011).
[Crossref] [PubMed]

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

2010 (7)

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

A. Wojcik and P. V. Kamat, “Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D,” ACS Nano 4(11), 6697–6706 (2010).
[Crossref] [PubMed]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

2009 (3)

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys. 130(8), 086101 (2009).
[Crossref] [PubMed]

A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
[Crossref]

2008 (6)

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a dye molecule to graphene,” J. Chem. Phys. 129(5), 054703 (2008).
[Crossref] [PubMed]

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

2007 (2)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

2006 (1)

K. Y. Win and S. S. Feng, “In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation,” Biomaterials 27(10), 2285–2291 (2006).
[Crossref] [PubMed]

2005 (1)

M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat. Rev. Cancer 5(3), 161–171 (2005).
[Crossref] [PubMed]

2004 (2)

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

1999 (1)

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

1996 (1)

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

1994 (2)

1991 (1)

M. A. Ali, J. Moghaddasi, and S. A. Ahmed, “Optical properties of cooled rhodamine B in ethanol,” J. Opt. Soc. Am. B. 8(9), 1807–1810 (1991).
[Crossref]

1989 (1)

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
[Crossref]

1987 (1)

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated Rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

1950 (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A. 204(1078), 406–423 (1950).
[Crossref]

Achilefu, S.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Ahmed, S. A.

Akers, W. J.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Alfano, R. R.

Ali, M. A.

Arbeloa, F. L.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
[Crossref]

Arbeloa, I. L.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
[Crossref]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Barua, S.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

Bavali, A.

Bednarski, M. D.

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

Bellard, E.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Berezin, M.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Bibette, J.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Busch, K.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B Condens. Matter 50(1), 93–98 (1994).
[Crossref] [PubMed]

Cai, X.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Cai, X. J.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Canning, A.

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

Car, R.

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

Chang, C. C.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Chang, H. C.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Chang, Y. R.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Chen, J. T.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Chen, K.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Chen, Y.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Chen, Y. S.

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Chen, Z. G.

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Choi, I.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Coll, J. L.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Dai, G. H.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Dai, H.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

Daltrozzo, E.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

De Vita, A.

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

Dean, D.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Dey, S. K.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

Dikin, D. A.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Dommett, G. H. B.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Dong, C. Y.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Dong, H. Q.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Duan, H.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Dufort, S.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Ecochard, V.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Economou, E. N.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B Condens. Matter 50(1), 93–98 (1994).
[Crossref] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Ensslin, K.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Evmenenko, G.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Fan, C.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Fan, K.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Fan, S.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Fang, C. Y.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Fang, H.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Fann, W.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Feng, G.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Feng, L.

L. Feng and Z. Liu, “Graphene in biomedicine: opportunities and challenges,” Nanomedicine (Lond) 6(2), 317–324 (2011).
[Crossref] [PubMed]

Feng, S. S.

K. Y. Win and S. S. Feng, “In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation,” Biomaterials 27(10), 2285–2291 (2006).
[Crossref] [PubMed]

Feng, X.

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat. Rev. Cancer 5(3), 161–171 (2005).
[Crossref] [PubMed]

Fischer, G. M.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Fu, C. C.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Fuhrhop, R.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Galli, G.

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

Gambhir, S. S.

A. S. Thakor and S. S. Gambhir, “Nanooncology: The future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

Ge, J.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Geim, A. K.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Geng, Z.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Golzio, M.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Gomez-Santos, G.

G. Gomez-Santos and T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011).
[Crossref]

Goutayer, M.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Green, H. N.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Guccione, S.

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

Guo, K.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Guo, Z.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Güttinger, J.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Han, C. C.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Harvey, M. D.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

He, S.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Heinrich, E.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Hens, S. A. C.

A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
[Crossref]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Ho, D.

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

Hu, J.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Huang, H. C.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

Huang, K.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A. 204(1078), 406–423 (1950).
[Crossref]

Huang, S. T.

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

Huang, X.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Huang, Y.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Hummelga, M.

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

Hwang, P.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Ihn, T.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Jiang, S.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Josserand, V.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Jun, H.-W.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Kamat, P. V.

A. Wojcik and P. V. Kamat, “Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D,” ACS Nano 4(11), 6697–6706 (2010).
[Crossref] [PubMed]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Kim, C.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Kodiyath, R.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Konios, D.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

Kulkarni, D. D.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Kymakis, E.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

Lan, R.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Lanza, G. M.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Lee, H. Y.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Lee, S. T.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Lenke, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

Leupacher, W.

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated Rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

Li, D.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Li, D. L.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Li, F.

X.-F. Zhang and F. Li, “Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence,” J. Photochem. Photobiol. Chem. 246(15), 8–15 (2012).
[Crossref]

Li, K. C.

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

Li, N. B.

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

Li, Y. Y.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Liang, H.

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

Lim, T. S.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Liu, C.-Y.

Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
[Crossref]

Liu, L.

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
[Crossref]

Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
[Crossref]

Liu, Z.

L. Feng and Z. Liu, “Graphene in biomedicine: opportunities and challenges,” Nanomedicine (Lond) 6(2), 317–324 (2011).
[Crossref] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

Liu, Z. F.

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Luo, H. Q.

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

Lv, G.

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

Ma, Y.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Ma, Y. F.

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Man, H. B.

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

Maret, G.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

McIntosh, R.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Meredith, P.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

Mirershadi, S.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

Moghaddasi, J.

M. A. Ali, J. Moghaddasi, and S. A. Ahmed, “Optical properties of cooled rhodamine B in ethanol,” J. Opt. Soc. Am. B. 8(9), 1807–1810 (1991).
[Crossref]

Mohammadian, M.

Molitor, F.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Mortazavi, S. Z.

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/Blue Spectral Shifts of Laser-Induced Fluorescence Emission Due to Different Nanoparticle Suspensions in Various Dye Solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
[Crossref] [PubMed]

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
[Crossref]

Mousavi Pour, M. R.

Nguyen, S. T.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Novoselov, K. S.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Ojeda, P. R.

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
[Crossref]

Olin, H.

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

Paci, J. T.

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

Paganin-Gioanni, A.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Pandit, S. D.

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

Paquereau, L.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Parvin, P.

A. Bavali, P. Parvin, S. Z. Mortazavi, M. Mohammadian, and M. R. Mousavi Pour, “Red/Blue Spectral Shifts of Laser-Induced Fluorescence Emission Due to Different Nanoparticle Suspensions in Various Dye Solutions,” Appl. Opt. 53(24), 5398–5409 (2014).
[Crossref] [PubMed]

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
[Crossref]

Penzkofer, A.

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated Rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

Piner, R. D.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Qi, W.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Rege, K.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

Ren, H.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Reyhani, A.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
[Crossref]

Rhys, A.

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A. 204(1078), 406–423 (1950).
[Crossref]

Robinson, J. T.

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

Royère, A.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

Ruoff, R. S.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Sadighi-Bonabi, R.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

Saha, B.

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

Salaam, A. D.

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Schatz, G. C.

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Scheffold, F.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

Schrand, A. M.

A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
[Crossref]

Schurtenberger, E.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Sebastian, K. L.

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys. 130(8), 086101 (2009).
[Crossref] [PubMed]

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a dye molecule to graphene,” J. Chem. Phys. 129(5), 054703 (2008).
[Crossref] [PubMed]

Sharma, G.

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

Shen, A. J.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Shenderova, O. A.

A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
[Crossref]

Shi, Y.

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

Shin, D. M.

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

Song, B.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Song, S.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Song, Y.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Soukoulis, C. M.

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B Condens. Matter 50(1), 93–98 (1994).
[Crossref] [PubMed]

Stampfer, C.

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Stankovich, S.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Stauber, T.

G. Gomez-Santos and T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011).
[Crossref]

Stratakis, E.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

Stylianakis, M. M.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

Swathi, R. S.

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys. 130(8), 086101 (2009).
[Crossref] [PubMed]

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a dye molecule to graphene,” J. Chem. Phys. 129(5), 054703 (2008).
[Crossref] [PubMed]

Teissié, J.

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Texier, I.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Thakor, A. S.

A. S. Thakor and S. S. Gambhir, “Nanooncology: The future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

Tsai, D. S.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Tsukruk, V. V.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Tweer, R.

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

Tzeng, Y. K.

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Vinet, F.

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

Vogel, R.

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

Wang, L.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Wang, L. V.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

Wang, P. J.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Wang, Q.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Wang, X.

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

Wang, Y.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Wang, Z.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Wen, H. Y.

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

Wen, Y.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Win, K. Y.

K. Y. Win and S. S. Feng, “In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation,” Biomaterials 27(10), 2285–2291 (2006).
[Crossref] [PubMed]

Wojcik, A.

A. Wojcik and P. V. Kamat, “Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D,” ACS Nano 4(11), 6697–6706 (2010).
[Crossref] [PubMed]

Wu, D.

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

Xi, Q.

X. F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

Xia, J.

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Xu, W.

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

Yang, C.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Yang, K.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Yang, L.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

Yang, R.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Yang, X.

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

Yang, X. Y.

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Yang, Y.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Yao, K.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Yi, J.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Yoo, K. M.

Zang, Z. W.

Zhang, C.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Zhang, F.

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Zhang, Q.

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Zhang, R.

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

Zhang, S.

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

Zhang, X.

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Zhang, X. F.

X. F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

Zhang, X. Y.

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

Zhang, X.-F.

X.-F. Zhang and F. Li, “Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence,” J. Photochem. Photobiol. Chem. 246(15), 8–15 (2012).
[Crossref]

Zhang, Y. M.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Zhang, Z.

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Zhao, D.

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Zhao, Q.

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Zhou, S.

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Zhu, C.

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Zimney, E. J.

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

Zumbusch, A.

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

ACS Appl. Mater. Interfaces (1)

H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, “Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide,” ACS Appl. Mater. Interfaces 6(4), 2459–2470 (2014).
[Crossref] [PubMed]

ACS Nano (2)

W. J. Akers, C. Kim, M. Berezin, K. Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A. Zumbusch, X. Cai, L. V. Wang, and S. Achilefu, “Non-invasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded per fluorocarbon nanoparticles,” ACS Nano 5(1), 173–182 (2011).

A. Wojcik and P. V. Kamat, “Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D,” ACS Nano 4(11), 6697–6706 (2010).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

S. He, B. Song, D. Li, C. Zhu, W. Qi, Y. Wen, L. Wang, S. Song, H. Fang, and C. Fan, “A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis,” Adv. Funct. Mater. 20(3), 453–459 (2010).
[Crossref]

Analyst (Lond.) (1)

S. T. Huang, Y. Shi, N. B. Li, and H. Q. Luo, “Fast and sensitive dye-sensor based on fluorescein/reduced graphene oxide complex,” Analyst (Lond.) 137(11), 2593–2599 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

Y. Liu, C.-Y. Liu, and Y. Liu, “Investigation on fluorescence quenching of dyes by graphite oxide and graphene,” Appl. Surf. Sci. 257(13), 5513–5518 (2011).
[Crossref]

Beilstein J Nanotechnol (1)

A. D. Salaam, P. Hwang, R. McIntosh, H. N. Green, H.-W. Jun, and D. Dean, “Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer,” Beilstein J Nanotechnol 5, 937–945 (2014).
[Crossref] [PubMed]

Biomaterials (1)

K. Y. Win and S. S. Feng, “In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation,” Biomaterials 27(10), 2285–2291 (2006).
[Crossref] [PubMed]

Biomed. Microdevices (1)

K. C. Li, S. D. Pandit, S. Guccione, and M. D. Bednarski, “Molecular imaging applications in nanomedicine,” Biomed. Microdevices 6(2), 113–116 (2004).
[Crossref] [PubMed]

CA Cancer J. Clin. (2)

A. S. Thakor and S. S. Gambhir, “Nanooncology: The future of cancer diagnosis and therapy,” CA Cancer J. Clin. 63(6), 395–418 (2013).
[Crossref] [PubMed]

X. Wang, L. Yang, Z. G. Chen, and D. M. Shin, “Application of nanotechnology in cancer therapy and imaging,” CA Cancer J. Clin. 58(2), 97–110 (2008).
[Crossref] [PubMed]

Carbon (2)

X. F. Zhang and Q. Xi, “A graphene sheet as an efficient electron acceptor and conductor for photoinduced charge separation,” Carbon 49(12), 3842–3850 (2011).
[Crossref]

R. Zhang, M. Hummelga, G. Lv, and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide,” Carbon 49(4), 1126–1132 (2011).
[Crossref]

Chem. Soc. Rev. (1)

D. Wu, F. Zhang, H. Liang, and X. Feng, “Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets,” Chem. Soc. Rev. 41(18), 6160–6177 (2012).
[Crossref] [PubMed]

Chemistry (1)

Y. Yang, Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu, “Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery,” Chemistry 18(14), 4208–4215 (2012).
[Crossref] [PubMed]

Chin. J. Chem. Phys. (1)

K. Fan, Z. Guo, Z. Geng, J. Ge, S. Jiang, J. Hu, and Q. Zhang, “How graphene oxide quenches fluorescence of rhodamine,” Chin. J. Chem. Phys. 26(3), 252–258 (2013).
[Crossref]

Crit. Rev. Solid State Mater. Sci. (1)

A. M. Schrand, S. A. C. Hens, and O. A. Shenderova, “Nanodiamond particles: Properties and perspectives for bioapplications,” Crit. Rev. Solid State Mater. Sci. 34(1), 18–74 (2009).
[Crossref]

Eur. J. Pharm. Biopharm. (1)

M. Goutayer, S. Dufort, V. Josserand, A. Royère, E. Heinrich, F. Vinet, J. Bibette, J. L. Coll, and I. Texier, “Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging,” Eur. J. Pharm. Biopharm. 75(2), 137–147 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “PEGylated nanographene oxide for delivery of water-insoluble cancer drugs,” J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
[Crossref] [PubMed]

J. Biomed. Mater. Res. A (1)

A. J. Shen, D. L. Li, X. J. Cai, C. Y. Dong, H. Q. Dong, H. Y. Wen, G. H. Dai, P. J. Wang, and Y. Y. Li, “Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment,” J. Biomed. Mater. Res. A 100(9), 2499–2506 (2012).
[PubMed]

J. Chem. Phys. (2)

R. S. Swathi and K. L. Sebastian, “Resonance energy transfer from a dye molecule to graphene,” J. Chem. Phys. 129(5), 054703 (2008).
[Crossref] [PubMed]

R. S. Swathi and K. L. Sebastian, “Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence,” J. Chem. Phys. 130(8), 086101 (2009).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Dispersion behaviour of graphene oxide and reduced graphene oxide,” J. Colloid Interface Sci. 430, 108–112 (2014).
[Crossref] [PubMed]

J. Control. Release (1)

H. C. Huang, S. Barua, G. Sharma, S. K. Dey, and K. Rege, “Inorganic nanoparticles for cancer imaging and therapy,” J. Control. Release 155(3), 344–357 (2011).
[Crossref] [PubMed]

J. Lumin. (2)

A. Penzkofer and W. Leupacher, “Fluorescence behavior of highly concentrated Rhodamine 6G solutions,” J. Lumin. 37(2), 61–72 (1987).
[Crossref]

F. L. Arbeloa, P. R. Ojeda, and I. L. Arbeloa, “Fluorescence Self-Quenching of the Molecular forms of Rhodamine B in Aqueous and Ethanolic Solution,” J. Lumin. 44(1–2), 105–112 (1989).
[Crossref]

J. Mater. Chem. (1)

X. Yang, Y. Wang, X. Huang, Y. Ma, Y. Huang, R. Yang, H. Duan, and Y. Chen, “Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity,” J. Mater. Chem. 21(10), 3448–3454 (2011).
[Crossref]

J. Opt. Soc. Am. B. (1)

M. A. Ali, J. Moghaddasi, and S. A. Ahmed, “Optical properties of cooled rhodamine B in ethanol,” J. Opt. Soc. Am. B. 8(9), 1807–1810 (1991).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

X.-F. Zhang and F. Li, “Interaction of graphene with excited and ground state rhodamine revealed by steady state and time resolved fluorescence,” J. Photochem. Photobiol. Chem. 246(15), 8–15 (2012).
[Crossref]

J. Phys. Chem. C (2)

X. Y. Yang, X. Y. Zhang, Z. F. Liu, Y. F. Ma, Y. Huang, and Y. S. Chen, “High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide,” J. Phys. Chem. C 112(45), 17554–17558 (2008).
[Crossref]

J. T. Paci, H. B. Man, B. Saha, D. Ho, and G. C. Schatz, “Understanding the surfaces of nanodiamonds,” J. Phys. Chem. C 117(33), 17256–17267 (2013).
[Crossref]

J. Phys. D Appl. Phys. (2)

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D Appl. Phys. 46(16), 165303 (2013).
[Crossref]

S. Fan, X. Zhang, Q. Wang, C. Zhang, Z. Wang, and R. Lan, “Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nano scatterers,” J. Phys. D Appl. Phys. 42(1), 015105 (2009).
[Crossref]

Laser Phys. Lett. (1)

S. Z. Mortazavi, P. Parvin, and A. Reyhani, “Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen,” Laser Phys. Lett. 9(7), 547–552 (2012).
[Crossref]

Nano Lett. (2)

K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett. 10(9), 3318–3323 (2010).
[Crossref] [PubMed]

C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin, “Tunable graphene single electron transistor,” Nano Lett. 8(8), 2378–2383 (2008).
[Crossref] [PubMed]

Nanomedicine (Lond) (1)

L. Feng and Z. Liu, “Graphene in biomedicine: opportunities and challenges,” Nanomedicine (Lond) 6(2), 317–324 (2011).
[Crossref] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Y. R. Chang, H. Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang, and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nat. Nanotechnol. 3(5), 284–288 (2008).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nat. Rev. Cancer 5(3), 161–171 (2005).
[Crossref] [PubMed]

Nature (3)

D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448(7152), 457–460 (2007).
[Crossref] [PubMed]

A. De Vita, G. Galli, A. Canning, and R. Car, “A microscopic model for surface-induced diamond-to-graphite transitions,” Nature 379(6565), 523–526 (1996).
[Crossref]

F. Scheffold, R. Lenke, R. Tweer, and G. Maret, “Localization or classical diffusion of light,” Nature 398(6724), 206–207 (1999).
[Crossref]

Opt. Commun. (1)

J. Yi, G. Feng, L. Yang, K. Yao, C. Yang, Y. Song, and S. Zhou, “Behaviors of the Rh6G random laser comprising solvents and scatterers with different refractive indices,” Opt. Commun. 285(24), 5276–5282 (2012).
[Crossref]

Phys. Rev. B (1)

G. Gomez-Santos and T. Stauber, “Fluorescence quenching in graphene: A fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84(16), 165438 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B Condens. Matter 50(1), 93–98 (1994).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A. (1)

K. Huang and A. Rhys, “Theory of light absorption and non-radiative transitions in F-centres,” Proc. R. Soc. Lond. A. 204(1078), 406–423 (1950).
[Crossref]

Radiol. Oncol. (1)

A. Paganin-Gioanni, E. Bellard, L. Paquereau, V. Ecochard, M. Golzio, and J. Teissié, “Fluorescence imaging agents in cancerology,” Radiol. Oncol. 44(3), 142–148 (2010).
[Crossref] [PubMed]

Small (1)

L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang, “Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs,” Small 6(4), 537–544 (2010).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. Vogel, P. Meredith, M. D. Harvey, and H. Rubinsztein-Dunlop, “Absorption and Fluorescence Spectroscopy of Rhodamine 6G in Titanium Dioxide Nanocomposites,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(1-2), 245–249 (2004).
[Crossref] [PubMed]

Other (3)

C. F. Bohren and D. R. Huffmann, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).

M. Keraji, F. H. Mirzaee, A. Bavali, H. Mehravaran, and P. Parvin, “Laser induced fluorescence and breakdown spectroscopy and acoustic response, to discriminate malignant and normal tissues,” in Clinical and Biomedical Spectroscopy and Imaging III, V. Deckert and N. Ramanujam, eds., Vol. 8798 of SPIE Proceedings (Optical Society of America, 2013), paper 87980A.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Overlapping area of the normalized absorption-emission spectra for (a) 8 µM Rd6G ethanolic solution (Inset: corresponding molecular structure) and (b) Absorption spectra of (Rd6G + G/GO/ND) hybrids.
Fig. 2
Fig. 2 Optical process for efficient LIF spectral shift due to re-absorption of fluorescence in hybrid media (NP + dye).
Fig. 3
Fig. 3 Flowchart of the optical process for efficient LIF quenching in hybrid media (NP + dye) and subsequent blue and red spectral shifts.
Fig. 4
Fig. 4 Atomic structure of a sp2 sheet of (a) Graphene oxide [52], (b) Graphene [27]; and schematic structure of a sp3 nanodiamond cluster [53].
Fig. 5
Fig. 5 Schematic of (a) right angle LIF setup for spectral shift measurements and Stern-Volmer plots due to G/GO/ND suspension in Rd6G dye solutions. (b) double-cuvettes LIF (differential) setup and (c) setup for investigation of Rd6G loading on G/GO/ND nanostructures.
Fig. 6
Fig. 6 (a) Rd6G laser induced fluorescence emission spectra due to various ethanolic Rd6G concentrations (1-1000 μM) without nanoparticle addition (b) corresponding peak intensity and (c) spectral red shift versus Rd6G dye concentration.
Fig. 7
Fig. 7 LIF emission spectra due to addition of (a) graphene (G) (b) graphene oxide (GO) and (c) nanodiamond (ND) densities (ranging 0.00 – 50 μg mL−1) in certain Rd6G solution, typically 40 μM.
Fig. 8
Fig. 8 Emissive wavelength due to various G/GO/ND additions (ranging 1-50 μg/mL) in 40 μM Rd6G ethanolic solution. Inset: emissive wavelength due to more ND additives (ranging 1-5000 μg/mL). Further addition of G/GO reduces the fluorescence intensity to a non-measurable level.
Fig. 9
Fig. 9 Absorption-emission spectra of Rd6G ethanolic solution and absorption spectra due to G, GO and ND suspension in ethanol.
Fig. 10
Fig. 10 Stern-Volmer plots for quenching of various densities of G/GO/ND in 40 μM Rd6G solution. F0(F) is the R6G fluorescence intensity in the absence (presence) of nanoparticles.
Fig. 11
Fig. 11 Time evolution of emissive wavelength due to excitation of (a) 40 μM (b) 100 μM of Rd6G ethanolic solution, with G/GO, at 532 nm. (insets: real time UV-Vis monitoring of the samples (c) concentration decrease due to the loading Rd6G molecules on G/GO nanostructures.

Tables (4)

Tables Icon

Table 1 Optical parameters of hybrid media containing Rd6G solution at the attendance of ND scatterers for propagating photons at 532 nm

Tables Icon

Table 2 LIF spectroscopy of G/GO/ND in Rd6G solution with a couple of cuvettes arrangement

Tables Icon

Table 3 Quenching analysis and spectral shift measurements due to the addition of G/GO/ND nanostructures (ranging 0-50 μgmL−1) into the 40 μM Rd6G solutions.

Tables Icon

Table 4 The amount of Rd6G loaded on G/GO after 8 and 20 h after nonlinear regression to determine Cdye(t).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k T ( r )= 1 τ D ( R 0 r ) 6 .
l s = 1 σ s ρ s .
σ s Rayleigh = 2 π 5 a 6 3 λ 4 [ n 2 1 n 2 +2 ] 2 .
F 0 F =1+K[Q].
F 0 F =( 1+ K D [ Q ] ).( 1+ K S [ Q ] ).
F 0 F =( ( 1+ K D [ Q ] )×( 1+ K S,1 [ Q ] )××( 1+ K S,i [ Q ] ) ).

Metrics