Abstract

We demonstrate a miniaturized single beam fiber optical trapping probe based on a high numerical aperture graded index (GRIN) micro-objective lens. This enables optical trapping at a distance of 200μm from the probe tip. The fiber trapping probe is characterized experimentally using power spectral density analysis and an original approach based on principal component analysis for accurate particle tracking. Its use for biomedical microscopy is demonstrated through optically mediated immunological synapse formation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment

Yuan Gong, Ai-Yan Ye, Yu Wu, Yun-Jiang Rao, Yao Yao, and Song Xiao
Opt. Express 21(13) 16181-16190 (2013)

Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging

Youxin Mao, Shoude Chang, Sherif Sherif, and Costel Flueraru
Appl. Opt. 46(23) 5887-5894 (2007)

Fiber based optical trapping of aerosols

D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin
Opt. Express 16(19) 14550-14560 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. T. Perkins, “Optical traps for single molecule biophysics: A primer,“ Laser Photon. Rev. 3(1–2), 203–220 (2009).
    [Crossref]
  2. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,“ Chem. Soc. Rev. 37(1), 42–55 (2008).
    [Crossref] [PubMed]
  3. A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
    [Crossref]
  4. M. Yevnin, D. Kasimov, Y. Gluckman, Y. Ebenstein, and Y. Roichman, “Independent and simultaneous three-dimensional optical trapping and imaging,“ Biomed. Opt. Express 4(10) 2087–2094 (2013).
    [Crossref] [PubMed]
  5. M. Goksör, J. Enger, and D. Hanstorp, “Optical manipulation in combination with multiphoton microscopy for single-cell studies,“ Appl. Opt. 43(25), 4831–4837 (2004).
    [Crossref] [PubMed]
  6. I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
    [Crossref] [PubMed]
  7. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,“ Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  8. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,“ Electron. Lett. 43(4), 204–206 (2007).
    [Crossref]
  9. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
    [Crossref] [PubMed]
  10. Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, and S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,“ Opt. Express 21(13), 16181–16190 (2013).
    [Crossref] [PubMed]
  11. Y. Gong, W. Huang, Q. F. Liu, Y. Wu, Y. J. Rao, G. D. Peng, J. Lang, and K. Zhang, “Graded-index optical fiber tweezers with long manipulation length,“ Opt. Express 22(21), 25267–25276 (2014).
    [Crossref] [PubMed]
  12. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,“ Opt. Express 19(20), 18871–18884 (2011).
    [Crossref] [PubMed]
  13. W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
    [Crossref] [PubMed]
  14. A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
    [Crossref] [PubMed]
  15. S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
    [Crossref] [PubMed]
  16. X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
    [Crossref] [PubMed]
  17. J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,“ Opt. Express 18(7), 7554–7568 (2010).
    [Crossref] [PubMed]
  18. M. Turk and A. Pentland, “Eigenfaces for Recognition,“ J. Cog. Neurosci. 3(1) 71–86 (1991).
    [Crossref]
  19. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,“ Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  20. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,“ Rev. Sci. Instrum. 75, 594 (2004).
    [Crossref]
  21. T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
    [Crossref]
  22. K. Svoboda and S. M. Block, “Biological applications of optical forces,“ Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [Crossref] [PubMed]
  23. J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
    [Crossref]
  24. C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2011 (2)

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,“ Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

2010 (2)

J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,“ Opt. Express 18(7), 7554–7568 (2010).
[Crossref] [PubMed]

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

2009 (2)

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

T. T. Perkins, “Optical traps for single molecule biophysics: A primer,“ Laser Photon. Rev. 3(1–2), 203–220 (2009).
[Crossref]

2008 (4)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,“ Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,“ Opt. Lett. 33(2), 156–158 (2008).
[Crossref] [PubMed]

2007 (1)

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,“ Electron. Lett. 43(4), 204–206 (2007).
[Crossref]

2006 (1)

2004 (2)

2000 (1)

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

1999 (2)

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
[Crossref] [PubMed]

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, “Biological applications of optical forces,“ Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

1991 (1)

M. Turk and A. Pentland, “Eigenfaces for Recognition,“ J. Cog. Neurosci. 3(1) 71–86 (1991).
[Crossref]

Allen, P. M.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Asmuth, D. M.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,“ Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,“ Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Bluestone, J. A.

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

Brambilla, G.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,“ Electron. Lett. 43(4), 204–206 (2007).
[Crossref]

Broekmans, O. D.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Bromley, S. K.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Cahalan, M. D.

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
[Crossref] [PubMed]

Cardenas, M. L.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Castro, C. E.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Chauveau, A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Chen, B. K.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Chen, P.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Chuang, F. Y. S.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Cižmár, T.

Dale, B. M.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Davis, D. M.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Davis, M. M.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Dholakia, K.

Dunsby, C.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Dustin, M. L.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Ebenstein, Y.

Enger, J.

Farge, G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Fienup, J. R.

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,“ Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

French, P. M. W.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Gluckman, Y.

Glückstad, J.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Goksör, M.

Gong, Y.

Gordon, R. E.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Grakoui, A.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Greulich, K. O.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Gu, M.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,“ Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Guo, C.

Hanstorp, D.

Heath, R. J. W.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Hell, S. W.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Heller, I.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Hoffmann, A.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Huang, W.

Hübner, W.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Huser, T.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

June, C. H.

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

Kasimov, D.

Keiding, S. R.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Kristensen, M. V.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Kylling, A. P.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Lang, J.

Lang, M. J.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Lee, W. M.

Li, X. D.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Lindballe, T. B.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Liu, Q. F.

Liu, Z.

Mazilu, M.

McNerney, G. P.

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

Menges, C.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Meyer zu Hörste, G.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Monajembashi, S.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Nadler, L. M.

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

Neil, M. A. A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Oddos, S.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Owen, D. M.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Palima, D. Z.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Peng, G. D.

Pentland, A.

M. Turk and A. Pentland, “Eigenfaces for Recognition,“ J. Cog. Neurosci. 3(1) 71–86 (1991).
[Crossref]

Perkins, T. T.

T. T. Perkins, “Optical traps for single molecule biophysics: A primer,“ Laser Photon. Rev. 3(1–2), 203–220 (2009).
[Crossref]

Peterman, E. J. G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Pilarczyk, G.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Purbhoo, M. A.

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Rao, Y. J.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,“ Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

Roichman, Y.

Shane, J. C.

Shaw, A. S.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Sitters, G.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Stapelfeldt, H.

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Sumen, C.

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,“ Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Tam, J. M.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Thompson, C. B.

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

Thurman, S. T.

Tromberg, B. J.

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
[Crossref] [PubMed]

Turk, M.

M. Turk and A. Pentland, “Eigenfaces for Recognition,“ J. Cog. Neurosci. 3(1) 71–86 (1991).
[Crossref]

Uhl, V.

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Vyas, J. M.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Wei, X.

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
[Crossref] [PubMed]

Wende, W.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Wu, Y.

Wuite, G. J. L.

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Xavier, R. J.

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Xiao, S.

Xu, F.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,“ Electron. Lett. 43(4), 204–206 (2007).
[Crossref]

Yang, J.

Yao, Y.

Ye, A. Y.

Yevnin, M.

Yuan, L.

Zhang, K.

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,“ Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Hoffmann, G. Meyer zu Hörste, G. Pilarczyk, S. Monajembashi, V. Uhl, and K. O. Greulich, “Optical tweezers for confocal microscopy,“ Appl. Phys. B 71(5), 747–753 (2000).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

S. Oddos, C. Dunsby, M. A. Purbhoo, A. Chauveau, D. M. Owen, M. A. A. Neil, D. M. Davis, and P. M. W. French, “High-speed high-resolution imaging of intercellular immune synapses using optical tweezers,“ Biophys. J. 95(10), L66–L68 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,“ Chem. Soc. Rev. 37(1), 42–55 (2008).
[Crossref] [PubMed]

Electron. Lett. (1)

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,“ Electron. Lett. 43(4), 204–206 (2007).
[Crossref]

Immunol. Today (1)

C. H. June, J. A. Bluestone, L. M. Nadler, and C. B. Thompson, “The B7 and CD28 receptor families,“ Immunol. Today 15(7), 321–331 (1994).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,“ J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

J. Cog. Neurosci. (1)

M. Turk and A. Pentland, “Eigenfaces for Recognition,“ J. Cog. Neurosci. 3(1) 71–86 (1991).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

T. B. Lindballe, M. V. Kristensen, A. P. Kylling, D. Z. Palima, J. Glückstad, S. R. Keiding, and H. Stapelfeldt, “Three-dimensional imaging and force characterization of multiple trapped particles in low NA couterpropagating optical traps,“ J. Eur. Opt. Soc. Rapid Publ. 6, 11057 (2011).
[Crossref]

Laser Photon. Rev. (1)

T. T. Perkins, “Optical traps for single molecule biophysics: A primer,“ Laser Photon. Rev. 3(1–2), 203–220 (2009).
[Crossref]

Nat. Methods (1)

I. Heller, G. Sitters, O. D. Broekmans, G. Farge, C. Menges, W. Wende, S. W. Hell, E. J. G. Peterman, and G. J. L. Wuite, “STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA,“ Nat. Methods 10(9), 910–916 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

PloS ONE (1)

J. M. Tam, C. E. Castro, R. J. W. Heath, M. L. Cardenas, R. J. Xavier, M. J. Lang, and J. M. Vyas, “Control and manipulation of pathogens with an optical trap for live cell imaging of intercellular interactions,“ PloS ONE 5(12), e15215 (2010).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

X. Wei, B. J. Tromberg, and M. D. Cahalan, “Mapping the sensitivity of T cells with an optical trap: Polarity and minimal number of receptors for Ca(2+) signaling,“ Proc. Natl. Acad. Sci. USA 96(15), 8471–8476 (1999).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,“ Rev. Sci. Instrum. 75, 594 (2004).
[Crossref]

Science (2)

W. Hübner, G. P. McNerney, P. Chen, B. M. Dale, R. E. Gordon, F. Y. S. Chuang, X. D. Li, D. M. Asmuth, T. Huser, and B. K. Chen, “Quantitative 3D video microscopy of HIV transfer across T cell virological synapses,“ Science 323(5922), 1743–1747 (2009).
[Crossref] [PubMed]

A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin, “The immunological synapse: a molecular machine controlling T cell activation,“ Science 285(9), 221–227 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic of the GRIN microlens (a) and the fiber optical trapping probe integrated into a commercial fluorescence microscopy platform (b). In (a) dashed lines denote rays propagating through the GRIN lens and theoretical image and object working distances (w.d.). (b) shows the fiber probe mounted on an inverted microscope. The insert shows detail of fiber-GRIN lens adapter. SMF: single-mode fiber, Obj: objective lens, FCx: filter cubes, M: mirror, EMCCD: electron multiplied charge coupled device, SMA: SMA fiber connector.
Fig. 2
Fig. 2 Illustration of the image filtering process and force characterization. (a) shows an original frame from a movie of a 3.00μm diameter bead trapped with 60mW. (b) shows the same frame as in (a) after application of the adaptive filter. The bottom row of images shows the first six PCs for the movie of which the first three are used in the adaptive filter. In this example, all PCs after the third contain only random noise. In (c) an additional bandpass filter has removed dead pixels and other small stationary objects. (d) shows the thresholded image, used for tracking. (e) shows force constants as a function of laser power along the x-axis for 3.00 and 4.17μm diameter polystyrene beads. The force constants have a power dependence given by fx,3.00μm = (0.63±0.01)pN · μm−1 ·mW−1, and fx,4.17μm = (0.39±0.01)pN · μm−1 · mW−1 for the x-axis, for 3.00 and 4.17μm diameter beads respectively. Similar trends, fy,3.00μm = (0.522 ± 0.006)pN · μm−1 · mW−1, and fy,4.17μm = (0.35 ± 0.006)pN · μm−1 · mW−1 were determined for the y-axis.
Fig. 3
Fig. 3 Selected video frames (a–c) showing an optically trapped T-cell (Signal), pre-loaded with Fluo-4, being positioned to form an immune synapse with an antibody coated bead. Frames show the image before (a), shortly after (b), and longer after (c) initial contact. Scale bar in (c) is 10μm. An adjacent cell (Control) is used to correct for photobleaching. (d) shows the increase in fluorescence signal from the trapped cell indicating increased calcium signaling and the formation of an immune synapse. An exponential curve (Exp. Fit) was fitted to confirm the decrease in intensity can be attributed to photobleaching.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C i j = n m M n m i M n m j
λ ( k ) V i ( k ) = j C i j V j ( k )
M i j ( 1 ) = 1 λ ( k ) m M i j m V m ( k ) .
c k j = n m M n m j M n m ( k ) .
M ˜ n m j = k = 1 k max c k j M n m ( k )

Metrics