Abstract

An all-optical ultrasound probe for vascular tissue imaging was developed. Ultrasound was generated by pulsed laser illumination of a functionalized carbon nanotube composite coating on the end face of an optical fiber. Ultrasound was detected with a Fabry-Pérot (FP) cavity on the end face of an adjacent optical fiber. The probe diameter was < 0.84 mm and had an ultrasound bandwidth of ~20 MHz. The probe was translated across the tissue sample to create a virtual linear array of ultrasound transmit/receive elements. At a depth of 3.5 mm, the axial resolution was 64 µm and the lateral resolution was 88 µm, as measured with a carbon fiber target. Vascular tissues from swine were imaged ex vivo and good correspondence to histology was observed.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pencil beam all-optical ultrasound imaging

Erwin J. Alles, Sacha Noimark, Edward Zhang, Paul C. Beard, and Adrien E. Desjardins
Biomed. Opt. Express 7(9) 3696-3704 (2016)

Video-rate all-optical ultrasound imaging

Erwin J. Alles, Sacha Noimark, Efthymios Maneas, Edward Z. Zhang, Ivan P. Parkin, Paul C. Beard, and Adrien E. Desjardins
Biomed. Opt. Express 9(8) 3481-3494 (2018)

Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging

Guangyao Li, Zhendong Guo, and Sung-Liang Chen
Opt. Express 25(21) 25023-25035 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation 103(4), 604–616 (2001).
    [Crossref] [PubMed]
  2. S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
    [Crossref] [PubMed]
  3. X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
    [Crossref] [PubMed]
  4. F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
    [Crossref] [PubMed]
  5. Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
    [Crossref]
  6. C. A. Mosse, R. J. Colchester, D. S. Bhachu, E. Z. Zhang, I. Papakonstantinou, and A. E. Desjardins, “Fiber-optic ultrasound transducers with carbon/PDMS composite coatings,” in Proceedings of SPIE A. A. Oraevsky and L. V. Wang, eds. (2014), Vol. 8943, p. 89430P.
    [Crossref]
  7. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
    [Crossref]
  8. R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
    [Crossref] [PubMed]
  9. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117(6), 3616–3627 (2005).
    [Crossref] [PubMed]
  10. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
    [Crossref] [PubMed]
  11. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  12. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
    [Crossref]
  13. B. Dong, S. Chen, Z. Zhang, C. Sun, and H. F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39(15), 4372–4375 (2014).
    [Crossref] [PubMed]
  14. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
    [Crossref] [PubMed]
  15. C. Koch, “Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor,” Appl. Opt. 38(13), 2812–2819 (1999).
    [Crossref] [PubMed]
  16. V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
    [Crossref]
  17. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  18. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
    [Crossref] [PubMed]
  19. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  20. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
    [Crossref] [PubMed]
  21. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” in Proceedings of SPIE, A. A. Oraevsky and L. V. Wang, eds. Vol. 7899, pp. 78991F (2011).
    [Crossref]
  22. K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
    [Crossref]
  23. J. O. Rawlings, S. G. Pantula, and D. A. Dickey, Applied Regression Analysis: A Research Tool, 2nd ed. (Springer, 1998).
  24. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
    [Crossref] [PubMed]
  25. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  26. M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
    [Crossref] [PubMed]
  27. D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. A, Pure Appl. Opt. 3(4), S23–S31 (2001).
    [Crossref]
  28. T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
    [Crossref] [PubMed]
  29. H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
    [Crossref]
  30. A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
    [Crossref]

2014 (4)

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

B. Dong, S. Chen, Z. Zhang, C. Sun, and H. F. Zhang, “Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications,” Opt. Lett. 39(15), 4372–4375 (2014).
[Crossref] [PubMed]

2013 (1)

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

2012 (1)

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

2011 (2)

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
[Crossref] [PubMed]

2010 (3)

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

2009 (2)

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

2006 (1)

F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
[Crossref] [PubMed]

2005 (1)

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117(6), 3616–3627 (2005).
[Crossref] [PubMed]

2003 (1)

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

2001 (3)

S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation 103(4), 604–616 (2001).
[Crossref] [PubMed]

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. A, Pure Appl. Opt. 3(4), S23–S31 (2001).
[Crossref]

1999 (3)

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

C. Koch, “Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor,” Appl. Opt. 38(13), 2812–2819 (1999).
[Crossref] [PubMed]

1994 (1)

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Ashkenazi, S.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Bear, J. C.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Beard, P. C.

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117(6), 3616–3627 (2005).
[Crossref] [PubMed]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

Bebie, H.

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

Bhachu, D. S.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Biagi, E.

D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. A, Pure Appl. Opt. 3(4), S23–S31 (2001).
[Crossref]

Buma, T.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Carmalt, C. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Chen, S.

Chen, S.-L.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

Chung, Y.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Colchester, R. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Cox, B. T.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117(6), 3616–3627 (2005).
[Crossref] [PubMed]

Degertekin, F. L.

F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
[Crossref] [PubMed]

Desjardins, A. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Dong, B.

Dore, A.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Frackowiak, R. S. J.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Frenz, M.

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

Friston, K. J.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Frith, C. D.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Gratt, S.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Guldiken, R. O.

F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
[Crossref] [PubMed]

Guo, L. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

Hart, A. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Hijazi, Z. M.

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

Holmes, A. P.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Hou, Y.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Hsieh, B.-Y.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

Huang, S.-W.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Jaros, J.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

Jeong, J.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Kang, S.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Karaman, M.

F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
[Crossref] [PubMed]

Kim, J.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Kim, J.-S.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Kim, K.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Kim, S. S.

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

Knight, B. P.

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

Koch, C.

C. Koch, “Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor,” Appl. Opt. 38(13), 2812–2819 (1999).
[Crossref] [PubMed]

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Köstli, K. P.

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

Lang, R. M.

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

Laufer, J.

Li, P.-C.

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

Li, X.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Ling, T.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “Integrated intravascular ultrasound and photoacoustic imaging scan head,” Opt. Lett. 35(17), 2892–2894 (2010).
[Crossref] [PubMed]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

Menichelli, D.

D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. A, Pure Appl. Opt. 3(4), S23–S31 (2001).
[Crossref]

Meyer, D.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Mills, T. N.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

Moon, H.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Mosse, C. A.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Nissen, S. E.

S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation 103(4), 604–616 (2001).
[Crossref] [PubMed]

Ntziachristos, V.

Nuster, R.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

O’Donnell, M.

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Ok, J. G.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Paltauf, G.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Papakonstantinou, I.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Park, H. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Parkin, I. P.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Perennes, F.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

Poline, J.-P.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Razansky, D.

Rendell, A. P.

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

Rosenthal, A.

Salvenmoser, W.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Schmitner, N.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Sette, M.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

Shih, W. Y.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Shih, W.-H.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Shung, K. K.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Smoljkic, G.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Song, Y.-W.

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Spisar, M.

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

Sun, C.

Tian, Y.

Treeby, B. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Vander Poorten, E.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Vander Sloten, J.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Wang, X.

Weber, H. P.

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

Wilkens, V.

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Worsley, K. J.

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

Wu, N.

Wu, W.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Wurzinger, G.

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

Yang, G.-Z.

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

Yock, P.

S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation 103(4), 604–616 (2001).
[Crossref] [PubMed]

Zhang, E.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, Z.

Zhou, Q.

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

Zou, X.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
[Crossref]

Circulation (1)

S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation 103(4), 604–616 (2001).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, and R. S. J. Frackowiak, “Statistical parametric maps in functional imaging: a general linear approach,” Hum. Brain Mapp. 2(4), 189–210 (1994).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (4)

T. Buma, M. Spisar, and M. O’Donnell, “A high-frequency, 2-D array element using thermoelastic expansion in PDMS,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1161–1176 (2003).
[Crossref] [PubMed]

X. Li, W. Wu, Y. Chung, W. Y. Shih, W.-H. Shih, Q. Zhou, and K. K. Shung, “80-MHz intravascular ultrasound transducer using PMN-PT free-standing film,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(11), 2281–2288 (2011).
[Crossref] [PubMed]

F. L. Degertekin, R. O. Guldiken, and M. Karaman, “Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 474–482 (2006).
[Crossref] [PubMed]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (3)

B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117(6), 3616–3627 (2005).
[Crossref] [PubMed]

B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 4324–4336 (2012).
[Crossref] [PubMed]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am. 125(6), 3611–3622 (2009).
[Crossref] [PubMed]

J. Am. Coll. Cardiol. (1)

S. S. Kim, Z. M. Hijazi, R. M. Lang, and B. P. Knight, “The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions,” J. Am. Coll. Cardiol. 53(23), 2117–2128 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

J. Biophotonics (1)

R. Nuster, N. Schmitner, G. Wurzinger, S. Gratt, W. Salvenmoser, D. Meyer, and G. Paltauf, “Hybrid photoacoustic and ultrasound section imaging with optical ultrasound detection,” J. Biophotonics 6(6-7), 549–559 (2013).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

D. Menichelli and E. Biagi, “Optoacoustic sources: a practical Green function-based model for thin film laser-ultrasound generation,” J. Opt. A, Pure Appl. Opt. 3(4), S23–S31 (2001).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

H. Moon, J. Jeong, S. Kang, K. Kim, Y.-W. Song, and J. Kim, “Fiber-Bragg-grating-based ultrathin shape sensors displaying single-channel sweeping for minimally invasive surgery,” Opt. Lasers Eng. 59, 50–55 (2014).
[Crossref]

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Frenz, H. Bebie, H. P. Weber, and K. P. Köstli, “Temporal backward projection of optoacoustic pressure transients using fourier transform methods,” Phys. Med. Biol. 46(7), 1863–1872 (2001).
[Crossref] [PubMed]

Ultrasonics (1)

V. Wilkens and C. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37(1), 45–49 (1999).
[Crossref]

Other (5)

C. A. Mosse, R. J. Colchester, D. S. Bhachu, E. Z. Zhang, I. Papakonstantinou, and A. E. Desjardins, “Fiber-optic ultrasound transducers with carbon/PDMS composite coatings,” in Proceedings of SPIE A. A. Oraevsky and L. V. Wang, eds. (2014), Vol. 8943, p. 89430P.
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical transducer for ultrasound and photoacoustic imaging by dichroic filtering,” in 2012 IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 1410–1413.
[Crossref]

A. Dore, G. Smoljkic, E. Vander Poorten, M. Sette, J. Vander Sloten, and G.-Z. Yang, “Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation,” in 2012 IEEE International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 3806–3811.
[Crossref]

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” in Proceedings of SPIE, A. A. Oraevsky and L. V. Wang, eds. Vol. 7899, pp. 78991F (2011).
[Crossref]

J. O. Rawlings, S. G. Pantula, and D. A. Dickey, Applied Regression Analysis: A Research Tool, 2nd ed. (Springer, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Imaging system setup with an expanded section (left) showing the ultrasound generation and detection fiber within tubular metal housing (inner diameter 0.84 mm).
Fig. 2
Fig. 2 Results from a 7 µm carbon fiber at 4.5 mm depth. (a) Raw image. (b) Image after cross-talk removed. (c) Image after cross-talk removed and reconstruction, with axial (A) and lateral (L) dimensions labelled. (d) Axial and lateral cross-sections taken through the reconstructed image shown in (c) with profile inset (scale bar = 200 µm).
Fig. 3
Fig. 3 Measured ultrasound imaging system resolution in the axial dimension (circles) and in the lateral dimension (squares) for different target depths.
Fig. 4
Fig. 4 (a) and (b) Optical ultrasound image of swine aorta samples (scale bar 2 mm) with tunica media, T, cross-talk, X, the base of the tissue mount, B, a side branch, SB, a lymph node, LN, and a vessel, V, labelled. Arrows indicate two reflective layers, which may correspond to the intima. (c) and (d) show histology of aorta sections corresponding to images (a) and (b), respectively.
Fig. 5
Fig. 5 (a) Optical ultrasound image of the carotid artery, showing the tunica media (1 = top boundary; 2 = bottom boundary), the external elastic lamina (2 = top boundary; 3 = bottom boundary), and the adventitia (3 = top boundary). (b) Corresponding histological cross-section (H&E) of the carotid artery from which the layers in (a) were interpreted. In both (a), and (b), the scale bar corresponds to 1 mm for both axial and lateral dimensions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y i,meas = y i,xtalk + s i + ε i ,
y i,meas y i,xtalk ,
y i,xtalk c i,0 + c i,1 y i,xtalk + c i,2 y i,xtalk ,
y i,meas = X i C i + s i + ε i .
C ˜ i = [ X i T X i ] 1 X i T y i,meas .
s ˜ i = y i,meas X i C ˜ i .

Metrics