Abstract

A significant limitation of fiber bundle endomicroscopy systems is that the field of view tends to be small, usually only several hundred micrometers in diameter. Image mosaicking techniques can increase the effective image size, but require careful manipulation of the probe to ensure sufficient overlap between adjacent frames. For confocal endomicroscopes, which typically have frame rates on the order of 10 fps, this is particularly challenging. In this paper we demonstrate that line-scanning confocal endomicroscopy can, by use of a high speed linear CCD camera, achieve a frame rate of 120 fps while maintaining sufficient resolution and signal-to-noise ratio to allow imaging of topically stained gastrointestinal tissues. This leads to improved performance of a cross-correlation based mosaicking algorithm when compared with lower frame-rate systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Line-scanning fiber bundle endomicroscopy with a virtual detector slit

Michael Hughes and Guang-Zhong Yang
Biomed. Opt. Express 7(6) 2257-2268 (2016)

Fiber bundle shifting endomicroscopy for high-resolution imaging

Khushi Vyas, Michael Hughes, Bruno Gil Rosa, and Guang-Zhong Yang
Biomed. Opt. Express 9(10) 4649-4664 (2018)

Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

Yicong Wu, Yuxin Leng, Jiefeng Xi, and Xingde Li
Opt. Express 17(10) 7907-7915 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  2. R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
    [Crossref] [PubMed]
  3. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
    [Crossref] [PubMed]
  4. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
    [Crossref] [PubMed]
  5. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref] [PubMed]
  6. G. L. Goualher, A. Perchant, M. Genet, C. Cav, B. Viellerobe, B. Abrat, and N. Ayache, “Towards Optical Biopsies with an Integrated Fibered Confocal Fluorescence Microscope,” in Medical Imaging Computing and Computer Aided Intervention, (Springer, 2004), 761–768.
  7. T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).
  8. T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
    [Crossref] [PubMed]
  9. M. S. Erden, B. Rosa, J. Szewczyk, and G. Morel, “Mechanical design of a distal scanner for confocal microlaparoscope: a conic solution,” in Robotics and Automation (ICRA),2013IEEE International Conference on, (IEEE, 2013), 1205–1212.
    [Crossref]
  10. R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
    [Crossref]
  11. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
    [Crossref] [PubMed]
  12. M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
    [Crossref] [PubMed]
  13. M. H. Koucky and M. C. Pierce, “Axial response of high-resolution microendoscopy in scattering media,” Biomed. Opt. Express 4(10), 2247–2256 (2013).
    [Crossref] [PubMed]
  14. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
    [Crossref] [PubMed]
  15. S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
    [Crossref] [PubMed]
  16. C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
    [Crossref]
  17. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38(34), 7133–7144 (1999).
    [Crossref] [PubMed]
  18. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
    [Crossref] [PubMed]
  19. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
    [Crossref] [PubMed]
  20. H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
    [Crossref] [PubMed]
  21. A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
    [Crossref] [PubMed]
  22. T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
    [Crossref] [PubMed]
  23. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
    [PubMed]

2013 (1)

2012 (2)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

2011 (3)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
[PubMed]

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

2010 (1)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
[Crossref] [PubMed]

2009 (1)

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

2008 (3)

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

2007 (1)

2006 (1)

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

2005 (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

2004 (1)

2000 (1)

1999 (1)

1997 (1)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

1996 (1)

1993 (1)

1988 (1)

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Abidi, W. M.

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

Anandasabapathy, S.

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

Ayache, N.

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Aziz, D.

Bartoo, A. C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Bozinovic, N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

Chu, K. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Delaney, P. M.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Dickensheets, D. L.

Donaldson, L.

Ford, T.

Ford, T. N.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Gillenwater, A.

Gillenwater, A. M.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Gmitro, A. F.

Hatch, K. D.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
[Crossref] [PubMed]

Hopkins, M. F.

Hourtoule, C.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Juškattis, R.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Kano, A.

Kiesslich, R.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Kino, G. S.

Koucky, M. H.

Kroto, S. M.

Lacombe, F.

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

Lim, D.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Makhlouf, H.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Malandain, G.

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Mao, X. Q.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

McLaren, W. J.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Meining, A.

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

Mertz, J.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, “Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016–8025 (2008).
[Crossref] [PubMed]

Muldoon, T. J.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Neurath, M. F.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Nida, D. L.

Pennec, X.

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Perchant, A.

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Pierce, M.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
[PubMed]

Pierce, M. C.

Polglase, A. L.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Polydorides, A. D.

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

Richards-Kortum, R.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
[PubMed]

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Roblyer, D.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Rouse, A. R.

Sabharwal, Y. S.

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Santos, S.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Sheppard, C. J. R.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

Shukla, R.

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

Singh, S. K.

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

Skinner, S. A.

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Stepanek, V. M.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Tanbakuchi, A. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

Udovich, J. A.

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
[Crossref] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
[Crossref] [PubMed]

Ventalon, C.

Vercauteren, T.

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Vila, P. M.

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

Watson, T. F.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Williams, M. D.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Wilson, T.

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

Yu, D.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
[PubMed]

Am. J. Gastroenterol. (1)

M. C. Pierce, P. M. Vila, A. D. Polydorides, R. Richards-Kortum, and S. Anandasabapathy, “Low-cost endomicroscopy in the esophagus and colon,” Am. J. Gastroenterol. 106(9), 1722–1724 (2011).
[Crossref] [PubMed]

Am. J. Obstet. Gynecol. (1)

A. A. Tanbakuchi, J. A. Udovich, A. R. Rouse, K. D. Hatch, and A. F. Gmitro, “In vivo imaging of ovarian tissue using a novel confocal microlaparoscope,” Am. J. Obstet. Gynecol. 202(1), e1–e9 (2010).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Gastrointest. Endosc. (1)

A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005).
[Crossref] [PubMed]

Head Neck (1)

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[Crossref] [PubMed]

S. Santos, K. K. Chu, D. Lim, N. Bozinovic, T. N. Ford, C. Hourtoule, A. C. Bartoo, S. K. Singh, and J. Mertz, “Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle,” J. Biomed. Opt. 14(3), 030502 (2009).
[Crossref] [PubMed]

J. Mod. Opt. (1)

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt. 35(7), 1169–1185 (1988).
[Crossref]

J. Vis. Exp. (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47(47), e2306 (2011).
[PubMed]

Med. Image Anal. (1)

T. Vercauteren, A. Perchant, G. Malandain, X. Pennec, and N. Ayache, “Robust mosaicing with correction of motion distortions and tissue deformations for in vivo fibered microscopy,” Med. Image Anal. 10(5), 673–692 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

T. Vercauteren, A. Meining, F. Lacombe, and A. Perchant, “Real time autonomous video image registration for endomicroscopy: fighting the compromises,” Proc. SPIE 6082, 60820C (2008).

Scanning (1)

R. Juškattis, T. Wilson, and T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19(1), 15–19 (1997).
[Crossref]

World J Gastrointest. Endosc. (1)

R. Shukla, W. M. Abidi, R. Richards-Kortum, and S. Anandasabapathy, “Endoscopic imaging: How far are we from real-time histology?” World J Gastrointest. Endosc. 3(10), 183–194 (2011).
[Crossref] [PubMed]

Other (2)

G. L. Goualher, A. Perchant, M. Genet, C. Cav, B. Viellerobe, B. Abrat, and N. Ayache, “Towards Optical Biopsies with an Integrated Fibered Confocal Fluorescence Microscope,” in Medical Imaging Computing and Computer Aided Intervention, (Springer, 2004), 761–768.

M. S. Erden, B. Rosa, J. Szewczyk, and G. Morel, “Mechanical design of a distal scanner for confocal microlaparoscope: a conic solution,” in Robotics and Automation (ICRA),2013IEEE International Conference on, (IEEE, 2013), 1205–1212.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of line-scanning endomicroscopy system, shown in the plane in which the cylindrical lens has power. Telescope 1 expands the beam, while telescopes 2 and 3 are relays with unity magnification.
Fig. 2
Fig. 2 (a) Axial sectioning profiles for the line-scanning system (red), shown in comparison with point-scanning (green) and widefield illumination (blue). The line-scanning profile exhibits a full-width half-maximum only slightly larger than the point-scanning system, but with a significantly increased tail. The gentle fall-off in the widefield profile is due to simple geometric effects. (b) USAF resolution target, showing group 7 elements 2-6 and group 6 element 1, imaged with the line-scanning system. The target was back-illuminated by a green LED. The insets show a zoom on part of the target, with (top) and without (bottom) fiber-pattern removal by spatial filtering. Scale bar is 50 µm.
Fig. 3
Fig. 3 Example images of porcine colon (left column), stomach (centre column) and oesophagus (right column) mucosa, taken with the line-scan system running at 10 fps, 30 fps and 120 fps, shown with similar images from a point-scanning and widefield endomicroscope. Scale bar is 50 µm.
Fig. 4
Fig. 4 Example results from in vivo validation in a porcine model. (a) Endoscope view of probe in rectum; (b,c) single image frames acquired at 120 fps; (c) short mosaic showing field of view expansion. The apparent deformation of the crypts is also present in the video, and is not an artefact of the mosaicking algorithm. Scale bars are 50 µm.
Fig. 5
Fig. 5 Several examples of mosaics created using freehand and endoscope scanning. The averaging effect of the mosaicking algorithm tends to reduce the noise when compared with single image frames.
Fig. 6
Fig. 6 Schematic of confocal point-scanning endomicroscopy system used for comparison. Telescope 1 is a relay, telescope 2 provides a x2 beam expansion. L1 has a focal length of 75 cm. The mid-point between the two scanning mirrors is imaged onto the back focal plane of the objective.
Fig. 7
Fig. 7 Schematic of widefield endomicroscopy system used for comparison.

Tables (1)

Tables Icon

Table 1 Statistical results of mosaicking experiments using freehand and endoscope scanning.

Metrics