Abstract

Optical microangiography (OMAG) is an optical coherence tomography (OCT)-based imaging technique that is capable of achieving the angiographic imaging of biological tissues in vivo with a high imaging resolution and no need for dye injection. OMAG has a potential to become a clinical tool for the diagnosis and treatment monitoring of various retinopathies. In principle, OMAG extracts blood flow information based on a direct differentiation of complex or intensity OCT signals between repeated B-scans acquired at the same cross section, which is sensitive to blood cell movement. In practice, this method is prone to artifacts due to tissue hyper-reflection, commonly seen in retinal diseases such as diabetic retinopathy. In this paper, we propose a novel method to suppress the artifacts induced by hyper-reflection. We propose to scale OMAG flow signals by a weighting factor that is motion-sensitive but hyper-reflection insensitive. We show that this simple weighting approach is effective in suppressing the artifacts due to tissue hyper-reflections while still maintaining the detected capillary networks with high fidelity, especially in deeper retina. The effectiveness of the proposed technique is demonstrated by a phantom study and case studies on patients’ eyes with hyper-reflective foci. Finally we discuss potential applications of this technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical microangiography of retina and choroid and measurement of total retinal blood flow in mice

Zhongwei Zhi, Xin Yin, Suzan Dziennis, Tomasz Wietecha, Kelly L. Hudkins, Charles E. Alpers, and Ruikang K Wang
Biomed. Opt. Express 3(11) 2976-2986 (2012)

Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography

Anqi Zhang, Qinqin Zhang, and Ruikang K. Wang
Biomed. Opt. Express 6(10) 4130-4143 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Bek, “Regional morphology and pathophysiology of retinal vascular disease,” Prog. Retin. Eye Res. 36, 247–259 (2013).
    [Crossref] [PubMed]
  2. K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
    [Crossref] [PubMed]
  3. Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
    [Crossref] [PubMed]
  4. J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
    [Crossref] [PubMed]
  5. Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [Crossref] [PubMed]
  6. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
    [Crossref] [PubMed]
  7. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [Crossref] [PubMed]
  8. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [Crossref] [PubMed]
  9. R. K. Wang, “Method and Apparatus for Ultrahigh Sensitive Optical Microangiography”. Patent Identification. No. 20120307014 (2010).
  10. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005).
    [Crossref] [PubMed]
  11. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
    [Crossref] [PubMed]
  12. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  13. J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
    [Crossref] [PubMed]
  14. D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
    [Crossref] [PubMed]
  15. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [Crossref] [PubMed]
  16. Z. W. Zhi, J. Qin, L. An, and R. K. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
    [Crossref] [PubMed]
  17. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]
  18. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [Crossref] [PubMed]
  19. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
    [Crossref] [PubMed]
  20. P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
    [Crossref] [PubMed]
  21. L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
    [Crossref] [PubMed]
  22. Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
    [PubMed]
  23. M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
    [Crossref] [PubMed]
  24. M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
    [Crossref] [PubMed]
  25. A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
    [Crossref] [PubMed]
  26. G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
    [Crossref] [PubMed]
  27. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  28. U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).
  29. R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
    [Crossref] [PubMed]
  30. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
    [Crossref] [PubMed]
  31. Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
    [Crossref] [PubMed]
  32. W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
    [Crossref] [PubMed]
  33. G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
    [Crossref] [PubMed]
  34. X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
    [Crossref] [PubMed]
  35. G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
    [Crossref] [PubMed]
  36. S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
    [Crossref] [PubMed]

2014 (4)

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

2013 (4)

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

T. Bek, “Regional morphology and pathophysiology of retinal vascular disease,” Prog. Retin. Eye Res. 36, 247–259 (2013).
[Crossref] [PubMed]

2012 (3)

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

R. Motaghiannezam and S. Fraser, “Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography,” Biomed. Opt. Express 3(3), 503–521 (2012).
[Crossref] [PubMed]

2011 (5)

L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express 2(5), 1184–1193 (2011).
[Crossref] [PubMed]

Z. W. Zhi, J. Qin, L. An, and R. K. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

2010 (8)

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
[Crossref] [PubMed]

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

2009 (1)

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2003 (2)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

1997 (2)

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Z. P. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[Crossref] [PubMed]

Adams, A. J.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Akagi, T.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

An, L.

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Z. W. Zhi, J. Qin, L. An, and R. K. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

Andre, R.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Arakawa, N.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Bajraszewski, T.

Balaratnasingam, C.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Ballini, J. P.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Bandello, F.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Baran, U.

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).

Barez, S.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Barry, C. J.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Barton, J. K.

Baumüller, S.

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Bearse, M. A.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Bek, T.

T. Bek, “Regional morphology and pathophysiology of retinal vascular disease,” Prog. Retin. Eye Res. 36, 247–259 (2013).
[Crossref] [PubMed]

Blatter, C.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Bolz, M.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Bouma, B. E.

Braichotte, D.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Cable, A.

Cense, B.

Chao, J. R.

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

Charbel Issa, P.

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Chen, T. C.

Chen, Z. P.

Cheng, S. G.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Choi, W. J.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Coscas, F.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Coscas, G.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Cringle, S. J.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

De Benedetto, U.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

de Boer, J. F.

Deak, G.

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Deák, G. G.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

Dhamdhere, K. P.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Drexler, W.

Durbin, M. K.

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

Ellabban, A. A.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Enfield, J.

Fercher, A. F.

Fingler, J.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Francis, P.

Fraser, S.

Fraser, S. E.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Grajciar, B.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Gregori, G.

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

Gruber, A.

Hanson, S. R.

Holz, F. G.

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Horii, T.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Huang, Y. P.

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

Huber, R.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Hurst, S.

Jacques, S. L.

Jiang, J.

Jonathan, E.

Keane, P. A.

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Khurana, M.

Kim, D. Y.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Klein, T.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Knutsson, P.

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

Kriechbaum, K.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Laron, M.

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Leahy, M.

Leitgeb, R. A.

Leung, M. K. K.

Li Calzi, C. I.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Ma, Z.

Malekafzali, A.

Manzanera, S.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Mariampillai, A.

McAllister, I. L.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Mendis, K. R.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Milner, T. E.

Moriyama, E. H.

Morse, L. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Motaghiannezam, R.

Munce, N. R.

Murakami, T.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Muraoka, Y.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Mylonas, G.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Nassif, N.

Nelson, J. S.

Nishijima, K.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Owner-Petersen, M.

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

Park, B. H.

Park, S. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Pierce, M. C.

Popovic, Z.

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

Prager, S.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

Qin, J.

Reif, R.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Roorda, A.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Rosenfeld, P. J.

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Roudot-Thoraval, F.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Sadda, S. R.

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Saunders, S.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

Schmetterer, L.

Schmidt-Erfurth, U.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schmitz-Valckenberg, S.

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Schmoll, T.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Scholda, C.

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

Scholl, H. P. N.

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Schwartz, D.

Schwartz, D. M.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Sharma, U.

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

Shen, T. T.

L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Shi, L.

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).

Sjöstrand, J.

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

Souied, E.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Srinivas, S.

Standish, B. A.

Stetson, P. F.

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Stromski, S.

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

Tam, J.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Tearney, G. J.

Thaung, J.

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

Thorell, M. R.

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Tiruveedhula, P.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Uji, A.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Utke, N.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

van den Bergh, H.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

van Gemert, M. J. C.

Vismara, S.

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

Wagnières, G.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Wang, R. K.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Y. Wang and R. K. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
[Crossref] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[Crossref] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
[Crossref] [PubMed]

Wang, R. K. K.

Z. W. Zhi, J. Qin, L. An, and R. K. K. Wang, “Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds,” Opt. Lett. 36(16), 3169–3171 (2011).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

Wang, X. J.

Wang, Y.

Werner, J. S.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

White, B. R.

Wieser, W.

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

Wilson, B. C.

Wilson, D. J.

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yang, C. H.

Yang, V. X. D.

Yin, X.

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

Yoshimura, N.

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Yousefi, S.

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

Yu, D. Y.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Yu, P.

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zawadzki, R. J.

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[Crossref] [PubMed]

Zellweger, M.

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Zhang, Q. Q.

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Zhi, Z. W.

Am. J. Ophthalmol. (1)

A. Uji, T. Murakami, K. Nishijima, T. Akagi, T. Horii, N. Arakawa, Y. Muraoka, A. A. Ellabban, and N. Yoshimura, “Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema,” Am. J. Ophthalmol. 153(4), 710–717 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Eye (Lond.) (1)

P. A. Keane and S. R. Sadda, “Imaging chorioretinal vascular disease,” Eye (Lond.) 24(3), 422–427 (2010).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, and D. Y. Yu, “Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–5869 (2010).
[Crossref] [PubMed]

Z. Popovic, P. Knutsson, J. Thaung, M. Owner-Petersen, and J. Sjöstrand, “Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(5), 2649–2655 (2011).
[Crossref] [PubMed]

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (7)

C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, and R. A. Leitgeb, “Ultrahigh-speed non-invasive widefield angiography,” J. Biomed. Opt. 17(7), 070505 (2012).
[Crossref] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[Crossref] [PubMed]

L. An, T. T. Shen, and R. K. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt. 16(10), 106013 (2011).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, “Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,” J. Biomed. Opt. 19(3), 036010 (2014).
[Crossref] [PubMed]

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

U. Baran, L. Shi, and R. K. Wang, “Capillary blood flow imaging within human finger cuticle using optical microangiography,” J. Biophotonics,  8, 46–51 (2013).

Ophthalmic Surg Lasers Imaging Retina (1)

M. R. Thorell, Q. Q. Zhang, Y. P. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-source OCT angiography of macular telangiectasia type 2,” Ophthalmic Surg Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Ophthalmologica (1)

G. Coscas, U. De Benedetto, F. Coscas, C. I. Li Calzi, S. Vismara, F. Roudot-Thoraval, F. Bandello, and E. Souied, “Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration,” Ophthalmologica 229(1), 32–37 (2013).
[Crossref] [PubMed]

Ophthalmology (3)

M. Bolz, U. Schmidt-Erfurth, G. Deak, G. Mylonas, K. Kriechbaum, C. Scholda, and Diabetic Retinopathy Research Group Vienna, “Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema,” Ophthalmology 116(5), 914–920 (2009).
[Crossref] [PubMed]

G. G. Deák, M. Bolz, K. Kriechbaum, S. Prager, G. Mylonas, C. Scholda, U. Schmidt-Erfurth, and Diabetic Retinopathy Research Group Vienna, “Effect of retinal photocoagulation on intraretinal lipid exudates in diabetic macular edema documented by optical coherence tomography,” Ophthalmology 117(4), 773–779 (2010).
[Crossref] [PubMed]

S. Baumüller, P. Charbel Issa, H. P. N. Scholl, S. Schmitz-Valckenberg, and F. G. Holz, “Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2,” Ophthalmology 117(11), 2162–2168 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (6)

OSLI Retina. (1)

Y. P. Huang, Q. Q. Zhang, M. R. Thorell, L. An, M. K. Durbin, M. Laron, G. Gregori, U. Sharma, P. J. Rosenfeld, and R. K. Wang, “Swept-source OCT angiography of the retinal vasculature using intensity differentiation based OMAG algorithms,” OSLI Retina. 45(5), 382–389 (2014).
[PubMed]

Phys. Med. Biol. (1)

G. Wagnières, S. G. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42(7), 1415–1426 (1997).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

T. Bek, “Regional morphology and pathophysiology of retinal vascular disease,” Prog. Retin. Eye Res. 36, 247–259 (2013).
[Crossref] [PubMed]

Other (1)

R. K. Wang, “Method and Apparatus for Ultrahigh Sensitive Optical Microangiography”. Patent Identification. No. 20120307014 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) OCT structural image of the phantom, showing a clear hyper-reflective interface between the agar and the wire. (B) OMAG processing of the repeated measurements at this cross-section showing the artifacts of flow induced by the hyper-reflective structure. Also note some artifacts of flow from the strong reflection induced by the air-agar interface. (C) wOMAG processing of the same data set showing that the artifacts are completely suppressed. The scale bar in (A) indicates 500 μm.
Fig. 2
Fig. 2 (A) OCT structural projection image of the retinal tissue only (between ganglion cell layer and external limiting membrane) in the DR patient. (B) OCT structural projection image of the whole posterior eye including the choroid in the DR patient. (C)(E)(G)(I) and (D)(F)(H)(J) show the comparison between different methods (OMAG, wOMAG, CA1 and CA2, respectively) for detecting the blood flow in two typical B-scans at Line 1 and Line 2 as shown in (A). Structure is shown in grayscale and flow is shown in red. The scale bar in (C) indicates 500 μm.
Fig. 3
Fig. 3 (A) A schematic showing a typical segmentation of the three retinal layers based on the structural OCT image. (B) Zoomed FA corresponding to the OCT scanned region. (C)-(F) show the en face vascular images of the different layers using OMAG, wOMAG, CA1 and CA2, respectively. “1” stands for the inner retinal layer, “2” for the middle retinal layer, “3” for the outer retinal layer and “4” for a color coded display of the total retina with red indicating the inner retina, green for the middle retina and blue for the outer retina. The scale bar in (C1) indicates 500 μm in both dimensions. In D4 the white circle shows the region where capillaries can be seen more clearly in wOMAG than others.
Fig. 4
Fig. 4 (A) Frequency and (B) cumulative frequency histograms of the decorrelation coefficients in the scanned volume.
Fig. 5
Fig. 5 (A)-(D) En face vascular imaging of the whole retina for different D0 (0.05, 0.1, 0.2, 0.4) while n = 1; (E)-(H) En face vascular imaging of the retina for different n (0.5, 1, 2, 3) while D0 = 0.1. The error bar in (A) indicates 500 μm.
Fig. 6
Fig. 6 (A) Color fundus image of the left eye (OS) in the PCV patient. A red rectangular window shows the region where OCT scan was performed. The inset at right upper corner shows the OCT structural en face image of the retina. (B) FA image of the scanned eye. Arrow shows where PCV exists and the red rectangular window shows the OCT scan region; (C) and (D) show the results obtained from OMAG and wOMAG without and with suppression of hyper-reflective artifacts. Refer to Fig. 3 for detailed explanation of 1-4 related to the color coding scheme. The scale bar in (C1) indicates 500 μm in both dimensions.
Fig. 7
Fig. 7 (A) wOMAG of the left eye in the DR patient showing pathologies including capillary drop-out (arrows), tortuosity (arrowhead) and possible microaneurysm (diamond). (B) Structural OCT scanned at the dotted line of (A) showing the coexistence of an edema in the region with significant capillary dropout. (C) wOMAG of the left eye in the PCV patient. (D) Structural OCT scanned at the dotted line of (C) showing the existence of a pigment epithelial detachment below the hyper-reflective foci. The scale bar in (A) and (B) indicates 500 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F OMAG ( x,z )= 1 R1 i=1 R1 | I i+1 ( x,z ) I i ( x,z ) |
F wOMAG ( x,z )= F OMAG ( x,z )f( MI( x,z ) )
MI( x,z )=D( x,z )= 1 R1 i=1 R1 ( I i+1 ( x,z ) I i ( x,z ) ) 2 I i+1 2 ( x,z )+ I i 2 ( x,z )
f( D )= ( D D 0 ) n
F CA1 ( x,z )= 1 R i=1 R ( L I i ( x,z ) LI ¯ ( x,z ) ) 2

Metrics