Abstract

Heat is the product following the metabolism of cells, and the metabolism is closely related with the pathological information of living organism. So, there are strong ties between the heat distribution and the pathological state in living organism. In this paper, the mathematical function δ is introduced in the classical Pennes bio-heat transfer equation as the point heat source. By simplifying the boundary conditions, a novel bio-heat transfer model is established and solved in a spherical coordinate system. Based on the temperature distribution of human body surface, the information of heat source is mined layer by layer, and the corresponding q-r curve of heat intensity varying with depth is acquired combining the fitting method of Lorentz curve. According to a large number of clinical confirmed cases and statistics, the diagnostic criteria judging diseases by q-r curve are proposed. Five typical clinical practices are performed and four of the diagnosis results are very consistent with those of molybdenum target (MT) X-ray, B-ultrasonic images and pathological examination, one gives the result of early stage malignant tumor that MT X-ray and B-ultrasonic can’t check out. It is a radiation-free green method with noninvasive diagnostic procedure and accurate diagnosis result.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Combined hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a pilot study on time-domain methodology

Wei Zhang, Linhui Wu, Jiao Li, Xi Yi, Xin Wang, Yiming Lu, Weiting Chen, Zhongxing Zhou, Limin Zhang, Huijuan Zhao, and Feng Gao
Biomed. Opt. Express 4(2) 331-348 (2013)

Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors

Chong Huang, Yu Lin, Lian He, Daniel Irwin, Margaret M. Szabunio, and Guoqiang Yu
Appl. Opt. 54(29) 8808-8816 (2015)

Endoscopic optical coherence tomography: technologies and clinical applications [Invited]

Michalina J. Gora, Melissa J. Suter, Guillermo J. Tearney, and Xingde Li
Biomed. Opt. Express 8(5) 2405-2444 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
    [PubMed]
  2. K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).
    [Crossref]
  3. G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).
  4. A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express 4(4), 520–530 (2013).
    [Crossref] [PubMed]
  5. G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
    [Crossref] [PubMed]
  6. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).
    [PubMed]
  7. J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
    [Crossref] [PubMed]
  8. G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
    [Crossref] [PubMed]
  9. K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
    [Crossref] [PubMed]
  10. U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
    [Crossref] [PubMed]
  11. K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
    [Crossref]
  12. R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).
  13. M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).
  14. E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).
    [Crossref] [PubMed]
  15. M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).
  16. F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
    [Crossref]
  17. S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).
  18. S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
    [Crossref]
  19. J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
    [Crossref]
  20. M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
    [Crossref] [PubMed]
  21. P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
    [Crossref]
  22. J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
    [Crossref] [PubMed]
  23. D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
    [Crossref]
  24. H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
    [Crossref]
  25. C. F. Gao, K. Y. Li, and S. P. Zhang, “A Novel Approach of Analyzing the Relation between the Inner Heat Source and the Surface Temperature Distribution in Thermal Texture Maps,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept., Shanghai, China, (Academic, 2005) pp. 623–626.
  26. M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).
    [Crossref]
  27. Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).
    [Crossref]
  28. P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
    [Crossref]

2014 (1)

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

2013 (8)

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).
[Crossref]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express 4(4), 520–530 (2013).
[Crossref] [PubMed]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
[Crossref] [PubMed]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
[Crossref]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
[Crossref]

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).
[Crossref]

2012 (5)

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

2011 (2)

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
[Crossref]

2010 (1)

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

2009 (2)

2008 (2)

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

2006 (1)

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

2005 (1)

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

2004 (1)

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).
[Crossref]

2000 (1)

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

1998 (1)

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
[Crossref] [PubMed]

1948 (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

Absalan, H.

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

Acharya, U. R.

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

Ahlgren, P. D.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

Ahmad, S.

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

Ali, R.

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

Belliveau, N.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

Benk, C.

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

Bors, K.

Braun, C.

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

Brenner, M.

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

Buhman, K. K.

Busch, H. J.

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

Carluccio, G.

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

Chen, B.-W.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Chen, C.

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

Chen, H.

Cheng, J. X.

Collins, C. M.

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

Das, K.

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).
[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
[Crossref] [PubMed]

Deng, D.

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

Deng, Z. S.

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).
[Crossref]

Deng, Z.-S.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Dong, Y. G.

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

Elizalde-Blancas, F.

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

Erricolo, D.

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

Ewa, M.

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

Fan, C. L.

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

Fibich, G.

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Gandjbakhche, A.

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Gannot, G.

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Gannot, I.

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Gmachl, C. F.

Grzegorz, D.

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

Gulko, P. S.

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

Gupta, P. K.

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
[Crossref]

Hammer, A.

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Harald, E.

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

He, Z. Z.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Heilmann, C.

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

Helene, R.

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

Hernandez-Guerrero, A.

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

Hu, S. X.

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

Jamil, M.

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).
[Crossref]

Jansen, J. A.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
[Crossref] [PubMed]

Jung, Y.

Keangin, P.

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
[Crossref]

Keyserlingk, J. R.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

Krueger, M. W.

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

Li, K. Y.

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

Liakat, S.

Liu, J.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).
[Crossref]

Loureiro, F. S.

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

Lucassen, G. W.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
[Crossref] [PubMed]

Maccarini, P. F.

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
[Crossref]

Maghoul, A.

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

Mansur, W. J.

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

Manuel Luna, J.

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

Marek, P.

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

Michel, A. P.

Mishra, S. C.

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).
[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
[Crossref] [PubMed]

Ng, E. Y. K.

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).
[Crossref]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).
[Crossref] [PubMed]

Oh, S.

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

Ooi, E. H.

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).
[Crossref] [PubMed]

Oster, M.

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

Pennes, H. H.

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

Pereira, P. J. S.

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
[Crossref]

Rai, K. N.

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
[Crossref]

Rattanadecho, P.

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
[Crossref]

Rodrigues, D. B.

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
[Crossref]

Romero-Mendez, R.

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

Rostami, R.

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

SalmanOgli, A.

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

Schwarz, M.

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

Shi, Y.

Silva, J. E. A.

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

Singh, J.

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
[Crossref]

Singh, R.

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
[Crossref] [PubMed]

Slipchenko, M. N.

Sree, S. V.

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

Stefanie, S.

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

Sun, F.-R.

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

Tan, H. M.

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).
[Crossref] [PubMed]

Tan, J. H.

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

van Veen, G. N. A.

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
[Crossref] [PubMed]

Wang, H.

Wessapan, T.

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
[Crossref]

Wrobel, L. C.

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

Xiao, J.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Yang, L.

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

Yang, Y.

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

Yassa, M.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

Yu, E.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

Zhang, S.-P.

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

Zhu, J.

Acta Bioeng. Biomech. (1)

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

Ann. Rheum. Dis. (1)

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).
[Crossref] [PubMed]

Appl. Therm. Eng. (1)

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).
[Crossref]

Biomed. Opt. Express (1)

Burns (1)

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).
[Crossref] [PubMed]

Eng. Anal. Bound. Elem. (1)

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).
[Crossref]

IEEE Eng. Med. Biol. Mag. (1)

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).
[Crossref] [PubMed]

IEEE T. Biomed. Eng. (N.Y.) (2)

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

IEEE Trans. Magn. (1)

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

IEEE Trans. Nanotech. (1)

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

Int. J. Heat Mass Tran. (3)

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).
[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).
[Crossref]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).
[Crossref]

J. Appl. Physiol. (1)

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).
[PubMed]

J. Biomech. Eng. (1)

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).
[Crossref] [PubMed]

J. Infrared Millim. W. (1)

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).
[Crossref]

J. Med. Syst. (1)

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).
[Crossref] [PubMed]

J. Therm. Biol. (4)

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).
[Crossref] [PubMed]

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).
[Crossref]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).
[Crossref]

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).
[Crossref]

Lasers Surg. Med. (1)

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).
[Crossref] [PubMed]

Math. Comput. Model. (1)

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).
[Crossref]

Neurocomputing (1)

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).
[Crossref]

Opt. Express (1)

Other (1)

C. F. Gao, K. Y. Li, and S. P. Zhang, “A Novel Approach of Analyzing the Relation between the Inner Heat Source and the Surface Temperature Distribution in Thermal Texture Maps,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept., Shanghai, China, (Academic, 2005) pp. 623–626.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Spherical coordinate system created in internal human body.

Fig. 2
Fig. 2

Building of polar coordinate system on body surface.

Fig. 3
Fig. 3

Straight line set on infrared image.

Fig. 4
Fig. 4

Fitting of temperature distribution curve and Lorentz curve.

Fig. 5
Fig. 5

Resolving of thermal tomography. (a) Equal division of circle. (b) Circles with the same center point. (c) Heat intensity and its corresponding depth.

Fig. 6
Fig. 6

Plotting of q-r curve: horizontal axis represents depth r, vertical axis represents quantity of heat q. (a) q-r curve of diseased tissue. (b) q-r curve of normal tissue.

Fig. 7
Fig. 7

Section division of thermal tomography curve for female breast.

Fig. 8
Fig. 8

Schematic diagram of thermal tomography system for tumor diagnosis.

Fig. 9
Fig. 9

Prototype of thermal tomography system for tumor diagnosis.

Fig. 10
Fig. 10

Q-r curve analysis of woman A and the corresponding comparison. (a) The infrared thermal image of woman A. (b) The q-r curve analysis of woman A. (c) The image of MT X-ray of woman A. (d) The image of B-ultrasonic of woman A.

Fig. 11
Fig. 11

Q-r curve analysis of woman B and the corresponding comparison. (a) The infrared thermal image of woman B. (b) The q-r curve analysis of woman B. (c) The image of MT X-ray of woman B. (d) The image of B-ultrasonic of woman B.

Fig. 12
Fig. 12

Q-r curve analysis of woman C and the corresponding comparison. (a) The infrared thermal image of woman C. (b) The q-r curve analysis of woman C. (c) The image of MT X-ray of woman C. (d) The image of B-ultrasonic of woman C.

Fig. 13
Fig. 13

Q-r curve analysis of woman D and the corresponding comparison. (a) The infrared thermal image of woman D. (b) The q-r curve analysis of woman D. (c) The image of MT X-ray of woman D. (d) The image of B-ultrasonic of woman D.

Fig. 14
Fig. 14

Q-r curve analysis of woman E and the corresponding comparison. (a) The infrared thermal image of woman E. (b) The q-r curve analysis of woman E. (c) The image of MT X-ray of woman E. (d) The image of B-ultrasonic of woman E.

Tables (2)

Tables Icon

Table 1 Points on Straight Line and Their Corresponding Temperatures

Tables Icon

Table 2 Distribution Statistics of Q-r Curves

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ c T t = ( k T ) + w b ρ b c b ( T a T ) + Q m .
k Δ T + q v = c ρ T t .
Δ T + 1 k q v = 0.
Δ T = 1 k q δ ( r ) .
1 r 2 d d r ( r 2 d T d r ) = q r δ ( r ) .
T = q 4 π k r .
T ( x ) = q 4 π k r = q 4 π k d 2 + x 2 .
T ( x ) = q 4 π k d 2 + x 2 + T ( ) .
d = x T ( x ) T 2 ( 0 ) T 2 ( x ) .
q = 4 π r T ( 0 ) x T ( x ) T 2 ( 0 ) T 2 ( x ) .

Metrics