F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).

[Crossref]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).

[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).

[Crossref]
[PubMed]

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).

[Crossref]

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).

[Crossref]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

A. P. Michel, S. Liakat, K. Bors, and C. F. Gmachl, “In vivo measurement of mid-infrared light scattering from human skin,” Biomed. Opt. Express 4(4), 520–530 (2013).

[Crossref]
[PubMed]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).

[Crossref]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).

[Crossref]
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).

[Crossref]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).

[Crossref]
[PubMed]

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).

[PubMed]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).

[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).

[Crossref]
[PubMed]

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).

[Crossref]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).

[Crossref]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).

[Crossref]
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).

[Crossref]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).

[Crossref]

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).

[Crossref]
[PubMed]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).

[Crossref]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).

[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).

[Crossref]
[PubMed]

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).

[Crossref]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).

[Crossref]
[PubMed]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).

[Crossref]
[PubMed]

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).

[PubMed]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).

[Crossref]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).

[Crossref]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).

[Crossref]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).

[Crossref]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).

[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).

[Crossref]
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).

[Crossref]
[PubMed]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).

[Crossref]
[PubMed]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).

[Crossref]

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

M. Ewa, D. Grzegorz, and P. Marek, “The modeling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech. 10(5), 29–37 (2008).

M. Brenner, C. Braun, M. Oster, and P. S. Gulko, “Thermal signature analysis as a novel method for evaluating inflammatory arthritis activity,” Ann. Rheum. Dis. 65(3), 306–311 (2006).

[Crossref]
[PubMed]

P. Keangin, T. Wessapan, and P. Rattanadecho, “Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna,” Appl. Therm. Eng. 31(16), 3243–3254 (2011).

[Crossref]

E. Y. K. Ng, H. M. Tan, and E. H. Ooi, “Boundary element method with bioheat equation for skin burn injury,” Burns 35(7), 987–997 (2009).

[Crossref]
[PubMed]

Z. S. Deng and J. Liu, “Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method,” Eng. Anal. Bound. Elem. 28(2), 97–108 (2004).

[Crossref]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, and M. Yassa, “Functional infrared imaging of the breast,” IEEE Eng. Med. Biol. Mag. 19(3), 30–41 (2000).

[Crossref]
[PubMed]

G. Carluccio, D. Erricolo, S. Oh, and C. M. Collins, “An approach to rapid calculation of temperature change in tissue using spatial filters to approximate effects of thermal conduction,” IEEE T. Biomed. Eng. (N.Y.) 60(6), 1735–1741 (2013).

M. Schwarz, M. W. Krueger, H. J. Busch, C. Benk, and C. Heilmann, “Model-based assessment of tissue perfusion and temperature in deep hypothermic patients,” IEEE T. Biomed. Eng. (N.Y.) 57(7), 1577–1586 (2010).

R. Helene, S. Stefanie, and E. Harald, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn. 49(2), 244–249 (2013).

S. Ahmad and R. Ali, “Modeling and improvement of breast cancer site temperature profile by implantation of onin-like quantum-dot quantum-well heteronanocrystal in tumor site,” IEEE Trans. Nanotech. 11(2), 1183–1191 (2012).

F. S. Loureiro, W. J. Mansur, L. C. Wrobel, and J. E. A. Silva, “The explicit Green’s approach with stability enhancement for solving the bioheat transfer equation,” Int. J. Heat Mass Tran. 76(10), 393–404 (2014).

[Crossref]

J. Xiao, Z. Z. He, Y. Yang, B.-W. Chen, Z.-S. Deng, and J. Liu, “Investigation on three-dimensional temperature field of human knee considering anatomical structure,” Int. J. Heat Mass Tran. 54(9-10), 1851–1860 (2011).

[Crossref]

D. B. Rodrigues, P. J. S. Pereira, and P. F. Maccarini, “Study of the one dimensional and transient bioheat transfer equation: Multi-layer solution development and applications,” Int. J. Heat Mass Tran. 62(23), 153–162 (2013).

[Crossref]

H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol. 1(2), 93–122 (1948).

[PubMed]

J. Manuel Luna, R. Romero-Mendez, A. Hernandez-Guerrero, and F. Elizalde-Blancas, “Procedure to estimate thermophysical and geometrical parameters of embedded cancerous lesions using thermography,” J. Biomech. Eng. 134(3), 031008 (2012).

[Crossref]
[PubMed]

G. W. Lucassen, G. N. A. van Veen, and J. A. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance Fourier transform infrared spectra in vivo,” J. Biomed. Opt. 3(3), 267–280 (1998).

[Crossref]
[PubMed]

S. X. Hu, D. Deng, C. L. Fan, L. Yang, and F.-R. Sun, “Local heating of murine skin by millimeter waves: effect of blood perfusion,” J. Infrared Millim. W. 31(2), 188–192 (2012).

[Crossref]

U. R. Acharya, E. Y. K. Ng, J. H. Tan, and S. V. Sree, “Thermography based breast cancer detection using texture features and support vector machine,” J. Med. Syst. 36(3), 1503–1510 (2012).

[Crossref]
[PubMed]

K. Das and S. C. Mishra, “Estimation of tumor characteristics in a breast tissue with known skin surface temperature,” J. Therm. Biol. 38(6), 311–317 (2013).

[Crossref]

K. Das, R. Singh, and S. C. Mishra, “Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue,” J. Therm. Biol. 38(1), 32–40 (2013).

[Crossref]
[PubMed]

M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol. 38(5), 272–279 (2013).

[Crossref]

H. Absalan, A. SalmanOgli, R. Rostami, and A. Maghoul, “Simulation and investigation of quantum dot effects as inter heat-generator source in breast tumor site,” J. Therm. Biol. 37(7), 490–495 (2012).

[Crossref]

G. Fibich, A. Hammer, G. Gannot, A. Gandjbakhche, and I. Gannot, “Modeling and simulations of the pharmacokinetics of fluorophore conjugated antibodies in tumor vicinity for the optimization of fluorescence-based optical imaging,” Lasers Surg. Med. 37(2), 155–160 (2005).

[Crossref]
[PubMed]

P. K. Gupta, J. Singh, and K. N. Rai, “A numerical study on heat transfer in tissues during hyperthermia,” Math. Comput. Model. 57(5-6), 1018–1037 (2013).

[Crossref]

K. Y. Li, Y. G. Dong, C. Chen, and S.-P. Zhang, “The noninvasive construction of 3D temperature field in a biological body with Monte Carlo method,” Neurocomputing 72(1-3), 128–133 (2008).

[Crossref]

H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J. X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282–1290 (2009).

[PubMed]

C. F. Gao, K. Y. Li, and S. P. Zhang, “A Novel Approach of Analyzing the Relation between the Inner Heat Source and the Surface Temperature Distribution in Thermal Texture Maps,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sept., Shanghai, China, (Academic, 2005) pp. 623–626.