Abstract

The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Changes in autofluorescence based organoid model of muscle invasive urinary bladder cancer

Scott Palmer, Karina Litvinova, Andrey Dunaev, Stewart Fleming, David McGloin, and Ghulam Nabi
Biomed. Opt. Express 7(4) 1193-1200 (2016)

Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism

Kinan Alhallak, Lisa G. Rebello, Timothy J. Muldoon, Kyle P. Quinn, and Narasimhan Rajaram
Biomed. Opt. Express 7(11) 4364-4374 (2016)

Optical imaging of metabolism in HER2 overexpressing breast cancer cells

Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, and Melissa C. Skala
Biomed. Opt. Express 3(1) 75-85 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
    [Crossref] [PubMed]
  2. A. G. van der Heijden and J. A. Witjes, “Recurrence, Progression, and follow-up in non-muscle-invasive bladder cancer,” Eur. Urol. Suppl. 8(7), 556–562 (2009).
    [Crossref]
  3. K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
    [Crossref] [PubMed]
  4. P. A. Humphrey, “Urothelial carcinoma in situ of the bladder,” J. Urol. 187(3), 1057–1058 (2012).
    [Crossref] [PubMed]
  5. D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
    [Crossref] [PubMed]
  6. P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
    [Crossref] [PubMed]
  7. G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
    [Crossref] [PubMed]
  8. J. Parker and P. E. Spiess, “Current and emerging bladder cancer urinary biomarkers,” ScientificWorldJournal 11, 1103–1112 (2011).
    [Crossref] [PubMed]
  9. O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
    [Crossref] [PubMed]
  10. J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
    [PubMed]
  11. I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
    [PubMed]
  12. D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
    [Crossref] [PubMed]
  13. H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
    [Crossref] [PubMed]
  14. B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
    [PubMed]
  15. V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
    [Crossref] [PubMed]
  16. B. Thorell, “Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels,” Cytometry 4(1), 61–65 (1983).
    [Crossref] [PubMed]
  17. H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
    [Crossref] [PubMed]
  18. I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
    [Crossref] [PubMed]
  19. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
    [Crossref] [PubMed]
  20. F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
    [Crossref] [PubMed]
  21. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
    [Crossref] [PubMed]
  22. J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
    [Crossref] [PubMed]
  23. A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
    [Crossref] [PubMed]
  24. A. Walsh, R. S. Cook, B. Rexer, C. L. Arteaga, and M. C. Skala, “Optical imaging of metabolism in HER2 overexpressing breast cancer cells,” Biomed. Opt. Express 3(1), 75–85 (2012).
    [Crossref] [PubMed]
  25. C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
    [Crossref] [PubMed]
  26. V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
    [Crossref] [PubMed]
  27. W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
    [Crossref] [PubMed]
  28. S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
    [Crossref] [PubMed]
  29. S. K. Pattari and P. Dey, “Urine: beyond cytology for detection of malignancy,” Diagn. Cytopathol. 27(3), 139–142 (2002).
    [Crossref] [PubMed]
  30. C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
    [PubMed]
  31. H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
    [Crossref] [PubMed]

2014 (1)

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

2013 (2)

V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
[Crossref] [PubMed]

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

2012 (4)

A. Walsh, R. S. Cook, B. Rexer, C. L. Arteaga, and M. C. Skala, “Optical imaging of metabolism in HER2 overexpressing breast cancer cells,” Biomed. Opt. Express 3(1), 75–85 (2012).
[Crossref] [PubMed]

P. A. Humphrey, “Urothelial carcinoma in situ of the bladder,” J. Urol. 187(3), 1057–1058 (2012).
[Crossref] [PubMed]

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
[Crossref] [PubMed]

2011 (3)

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

J. Parker and P. E. Spiess, “Current and emerging bladder cancer urinary biomarkers,” ScientificWorldJournal 11, 1103–1112 (2011).
[Crossref] [PubMed]

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

2010 (1)

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

2009 (3)

S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
[Crossref] [PubMed]

A. G. van der Heijden and J. A. Witjes, “Recurrence, Progression, and follow-up in non-muscle-invasive bladder cancer,” Eur. Urol. Suppl. 8(7), 556–562 (2009).
[Crossref]

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

2008 (5)

D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
[Crossref] [PubMed]

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

2007 (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

2006 (1)

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

2005 (1)

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

2003 (1)

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

2002 (2)

S. K. Pattari and P. Dey, “Urine: beyond cytology for detection of malignancy,” Diagn. Cytopathol. 27(3), 139–142 (2002).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

2000 (2)

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

1997 (1)

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

1996 (1)

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

1983 (2)

B. Thorell, “Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels,” Cytometry 4(1), 61–65 (1983).
[Crossref] [PubMed]

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Aihara, H.

H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
[Crossref] [PubMed]

Alonzo, C.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Althausen, A. F.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

Amend, B.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Andreeff, M.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Arteaga, C. L.

Atsü, N.

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

Ayati, M.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Aymon, D.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

Backman, V.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Baldwin, A.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Barlogie, B.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Bedke, J.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Boachie, C.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Boone, C. W.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Brown, J. Q.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Canterero, L.

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

Carew, J. S.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Carr-Locke, D. L.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Catto, J. W.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Cheng, C.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Cook, J. A.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Cook, R. S.

Cookson, M. S.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Coskun, A. F.

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Crum, C. P.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Dasari, R. R.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

De Veld, D. C.

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

Deutsch, T. F.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

Dey, P.

S. K. Pattari and P. Dey, “Urine: beyond cytology for detection of malignancy,” Diagn. Cytopathol. 27(3), 139–142 (2002).
[Crossref] [PubMed]

Drewinko, B.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Droller, M. J.

S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
[Crossref] [PubMed]

Du, M.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

El-Naggar, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Erling, C.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

Feld, M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Feng, L.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Fraser, C.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Freireich, E. J.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Georgakoudi, I.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Gillenwater, A.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Göhde, W.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Golshan, A. R.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Goolsby, C. L.

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

Greiner, C.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Griffiths, T. R.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Grossman, H. B.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Hennenlotter, J.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Horstmann, M.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Hosseini, J.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Hu, L.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Hu, Y.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Huang, P.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Humphrey, P. A.

P. A. Humphrey, “Urothelial carcinoma in situ of the bladder,” J. Urol. 187(3), 1057–1058 (2012).
[Crossref] [PubMed]

Hunter, M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Jasemi, M.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Jichlinski, P.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

Jocham, D.

D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
[Crossref] [PubMed]

Johnson, T. S.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Jyothikumar, V.

V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
[Crossref] [PubMed]

Kabiri, M.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Keating, M. J.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Kim, Y. L.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Koenig, F.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

Kruck, S.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Larré, S.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Lau, W.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Lee, K.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Lem, S.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Levitt, J. M.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Lopes, C.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Lotan, Y.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Lovisa, B.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

Mavandadi, S.

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Mazloomfard, M. M.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

McGovern, F. J.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

McLaughlin-Drubin, M. E.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

McMahon, C. M.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Mehrsai, A. R.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Messing, E. M.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Millon, S. R.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Milowsky, M.

S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
[Crossref] [PubMed]

Mosiman, V. L.

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

Mowatt, G.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Mujat, C.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Müller, M. G.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Münger, K.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

N’Dow, J.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Nabi, G.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Nagele, U.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Oge, O.

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

Oliveira, P. A.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Olivo, M.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Ostrander, J. H.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Ozcan, A.

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Ozen, H.

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

Palmeira, C. A.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Parker, J.

J. Parker and P. E. Spiess, “Current and emerging bladder cancer urinary biomarkers,” ScientificWorldJournal 11, 1103–1112 (2011).
[Crossref] [PubMed]

Pattari, S. K.

S. K. Pattari and P. Dey, “Urine: beyond cytology for detection of malignancy,” Diagn. Cytopathol. 27(3), 139–142 (2002).
[Crossref] [PubMed]

Patterson, B. K.

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

Pavlova, I.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Pelicano, H.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Periasamy, A.

V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
[Crossref] [PubMed]

Pires, M. A.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Plunkett, W.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Pouli, D.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Quinn, K. P.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Raber, M. N.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Ramanujam, N.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Ramdas, L.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Rexer, B.

Richards-Kortum, R.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Riching, K. M.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Roodenburg, J. L.

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

Sahin, A.

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

Santos, L.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Sasaki, R.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Schilling, D.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Schomacker, K. T.

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

Schumann, J.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Seewaldt, V. L.

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

Seixas, F.

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Shakeri, S.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Shariat, S. F.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
[Crossref] [PubMed]

Sheets, E. E.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

Sievert, K. D.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Skala, M. C.

A. Walsh, R. S. Cook, B. Rexer, C. L. Arteaga, and M. C. Skala, “Optical imaging of metabolism in HER2 overexpressing breast cancer cells,” Biomed. Opt. Express 3(1), 75–85 (2012).
[Crossref] [PubMed]

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Soloway, M. S.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Soo, K. C.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Spiess, P. E.

J. Parker and P. E. Spiess, “Current and emerging bladder cancer urinary biomarkers,” ScientificWorldJournal 11, 1103–1112 (2011).
[Crossref] [PubMed]

Sridharan, G.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Stenzl, A.

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Stepp, H.

D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
[Crossref] [PubMed]

Sterenborg, H. J.

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

Stucenski, L. A.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Sun, Y.

V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
[Crossref] [PubMed]

Suzuki, T.

H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
[Crossref] [PubMed]

Svatek, R. S.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Swartzendruber, D. E.

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Tajiri, H.

H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
[Crossref] [PubMed]

Thorell, B.

B. Thorell, “Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels,” Cytometry 4(1), 61–65 (1983).
[Crossref] [PubMed]

Tian, F.

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Vale, L.

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

Van Dam, J.

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

van den Berg, H.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

van der Heijden, A. G.

A. G. van der Heijden and J. A. Witjes, “Recurrence, Progression, and follow-up in non-muscle-invasive bladder cancer,” Eur. Urol. Suppl. 8(7), 556–562 (2009).
[Crossref]

Varone, A.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Wagnieres, G.

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

Waidelich, R.

D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
[Crossref] [PubMed]

Walsh, A.

White, J. G.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Williams, M.

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Witjes, J. A.

A. G. van der Heijden and J. A. Witjes, “Recurrence, Progression, and follow-up in non-muscle-invasive bladder cancer,” Eur. Urol. Suppl. 8(7), 556–562 (2009).
[Crossref]

Witjes, M. J.

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

Xu, R. H.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Xylas, J.

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

Yaglidere, O.

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Zargar, M. A.

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Zhang, W.

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Zlotta, A. R.

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

H. Zhu, S. Mavandadi, A. F. Coskun, O. Yaglidere, and A. Ozcan, “Optofluidic fluorescent imaging cytometry on a cell phone,” Anal. Chem. 83(17), 6641–6647 (2011).
[Crossref] [PubMed]

Anticancer Res. (1)

C. A. Palmeira, P. A. Oliveira, F. Seixas, M. A. Pires, C. Lopes, and L. Santos, “DNA image cytometry in bladder cancer: state of the art,” Anticancer Res. 28(1B), 443–450 (2008).
[PubMed]

Biomed. Opt. Express (1)

Cancer Res. (4)

J. H. Ostrander, C. M. McMahon, S. Lem, S. R. Millon, J. Q. Brown, V. L. Seewaldt, and N. Ramanujam, “Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status,” Cancer Res. 70(11), 4759–4766 (2010).
[Crossref] [PubMed]

A. Varone, J. Xylas, K. P. Quinn, D. Pouli, G. Sridharan, M. E. McLaughlin-Drubin, C. Alonzo, K. Lee, K. Münger, and I. Georgakoudi, “Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues,” Cancer Res. 74(11), 3067–3075 (2014).
[Crossref] [PubMed]

I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62(3), 682–687 (2002).
[PubMed]

B. Barlogie, M. N. Raber, J. Schumann, T. S. Johnson, B. Drewinko, D. E. Swartzendruber, W. Göhde, M. Andreeff, and E. J. Freireich, “Flow cytometry in clinical cancer research,” Cancer Res. 43(9), 3982–3997 (1983).
[PubMed]

Clin. Cancer Res. (1)

I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, and A. Gillenwater, “Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue,” Clin. Cancer Res. 14(8), 2396–2404 (2008).
[Crossref] [PubMed]

Cytometry (2)

V. L. Mosiman, B. K. Patterson, L. Canterero, and C. L. Goolsby, “Reducing cellular autofluorescence in flow cytometry: an in situ method,” Cytometry 30(3), 151–156 (1997).
[Crossref] [PubMed]

B. Thorell, “Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels,” Cytometry 4(1), 61–65 (1983).
[Crossref] [PubMed]

Diagn. Cytopathol. (1)

S. K. Pattari and P. Dey, “Urine: beyond cytology for detection of malignancy,” Diagn. Cytopathol. 27(3), 139–142 (2002).
[Crossref] [PubMed]

Eur. Urol. (2)

S. Larré, J. W. Catto, M. S. Cookson, E. M. Messing, S. F. Shariat, M. S. Soloway, R. S. Svatek, Y. Lotan, A. R. Zlotta, and H. B. Grossman, “Screening for bladder cancer: rationale, limitations, whom to target, and perspectives,” Eur. Urol. 63(6), 1049–1058 (2013).
[Crossref] [PubMed]

D. Jocham, H. Stepp, and R. Waidelich, “Photodynamic diagnosis in urology: state-of-the-art,” Eur. Urol. 53(6), 1138–1150 (2008).
[Crossref] [PubMed]

Eur. Urol. Suppl. (1)

A. G. van der Heijden and J. A. Witjes, “Recurrence, Progression, and follow-up in non-muscle-invasive bladder cancer,” Eur. Urol. Suppl. 8(7), 556–562 (2009).
[Crossref]

Gastroenterol. Res. Pract. (1)

H. Aihara, H. Tajiri, and T. Suzuki, “Application of autofluorescence endoscopy for colorectal cancer screening: rationale and an update,” Gastroenterol. Res. Pract. 2012, 971383 (2012).
[Crossref] [PubMed]

Int. J. Cancer (2)

W. Zheng, W. Lau, C. Cheng, K. C. Soo, and M. Olivo, “Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J. Cancer 104(4), 477–481 (2003).
[Crossref] [PubMed]

C. Mujat, C. Greiner, A. Baldwin, J. M. Levitt, F. Tian, L. A. Stucenski, M. Hunter, Y. L. Kim, V. Backman, M. Feld, K. Münger, and I. Georgakoudi, “Endogenous optical biomarkers of normal and human papillomavirus immortalized epithelial cells,” Int. J. Cancer 122(2), 363–371 (2008).
[Crossref] [PubMed]

Int. J. Technol. Assess. Health Care (1)

G. Mowatt, J. N’Dow, L. Vale, G. Nabi, C. Boachie, J. A. Cook, C. Fraser, T. R. Griffiths, and Aberdeen Technology Assessment Review (TAR) Group, “Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: Systematic review and meta-analysis,” Int. J. Technol. Assess. Health Care 27(1), 3–10 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

V. Jyothikumar, Y. Sun, and A. Periasamy, “Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy,” J. Biomed. Opt. 18(6), 060501 (2013).
[Crossref] [PubMed]

J. Cell Biol. (1)

H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett, and P. Huang, “Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism,” J. Cell Biol. 175(6), 913–923 (2006).
[Crossref] [PubMed]

J. Urol. (2)

F. Koenig, F. J. McGovern, A. F. Althausen, T. F. Deutsch, and K. T. Schomacker, “Laser induced autofluorescence diagnosis of bladder cancer,” J. Urol. 156(5), 1597–1601 (1996).
[Crossref] [PubMed]

P. A. Humphrey, “Urothelial carcinoma in situ of the bladder,” J. Urol. 187(3), 1057–1058 (2012).
[Crossref] [PubMed]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1-2), 89–117 (2000).
[Crossref] [PubMed]

Oral Oncol. (1)

D. C. De Veld, M. J. Witjes, H. J. Sterenborg, and J. L. Roodenburg, “The status of in vivo autofluorescence spectroscopy and imaging for oral oncology,” Oral Oncol. 41(2), 117–131 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Scand. J. Urol. Nephrol. (1)

O. Oge, N. Atsü, A. Sahin, and H. Ozen, “Comparison of BTA stat and NMP22 tests in the detection of bladder cancer,” Scand. J. Urol. Nephrol. 34(6), 349–351 (2000).
[Crossref] [PubMed]

ScientificWorldJournal (1)

J. Parker and P. E. Spiess, “Current and emerging bladder cancer urinary biomarkers,” ScientificWorldJournal 11, 1103–1112 (2011).
[Crossref] [PubMed]

Urol. J. (1)

J. Hosseini, A. R. Golshan, M. M. Mazloomfard, A. R. Mehrsai, M. A. Zargar, M. Ayati, S. Shakeri, M. Jasemi, and M. Kabiri, “Detection of recurrent bladder cancer: NMP22 test or urine cytology?” Urol. J. 9(1), 367–372 (2012).
[PubMed]

Urol. Oncol. (1)

S. F. Shariat, M. Milowsky, and M. J. Droller, “Bladder cancer in the elderly,” Urol. Oncol. 27(6), 653–667 (2009).
[Crossref] [PubMed]

Urologe A (1)

P. Jichlinski, B. Lovisa, C. Erling, D. Aymon, H. van den Berg, and G. Wagnieres, “Fluorescence cystoscopy. Perspective in clinical practice and research,” Urologe A 47(8), 975–977 (2008).
[Crossref] [PubMed]

World J. Urol. (1)

K. D. Sievert, B. Amend, U. Nagele, D. Schilling, J. Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, and A. Stenzl, “Economic aspects of bladder cancer: what are the benefits and costs?” World J. Urol. 27(3), 295–300 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Spectra of NADH (black line) and FAD (red line) fluorescence under (a) excitation at 365nm and (b) excitation at 450nm.
Fig. 2
Fig. 2 Confocal microscopy image of fluorescence arising in BCa cells from Mitotracker Red (red), NADH (green) and FAD (purple).
Fig. 3
Fig. 3 Redox overviews of cell populations in triplicate (x = NADH, y = FAD): (a) Healthy cells; (b) Cancer cells.
Fig. 4
Fig. 4 Mean values of redox ratios for “HUC” healthy control cells and “5637” BCa cells.

Metrics