Abstract

The success of assisted reproductive technologies relies on accurate assessment of reproductive viability at successive stages of development for oocytes and embryos. The current scoring system used to select good-quality oocytes relies on morphologically observable traits and hence is indirect and subjective. Biodynamic imaging may provide an objective approach to oocyte and embryo assessment by measuring physiologically-relevant dynamics. Biodynamic imaging is a coherence-gated approach to 3D tissue imaging that uses digital holography to perform low-coherence speckle interferometry to capture dynamic light scattering from intracellular motions. The changes in intracellular activity during cumulus oocyte complex maturation, before and after in vitro fertilization, and the subsequent development of the zygote and blastocyst provide a new approach to the assessment of preimplant candidates.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution three-dimensional in vivo imaging of mouse oviduct using optical coherence tomography

Jason C. Burton, Shang Wang, C. Allison Stewart, Richard R. Behringer, and Irina V. Larina
Biomed. Opt. Express 6(7) 2713-2723 (2015)

Live tissue viability and chemosensitivity assays using digital holographic motility contrast imaging

Ran An, John Turek, Daniela Elena Matei, and David Nolte
Appl. Opt. 52(1) A300-A309 (2013)

Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos

Cho-Shuen Hsieh, Shee-Uan Chen, Yen-Wei Lee, Yu-Shih Yang, and Chi-Kuang Sun
Opt. Express 16(15) 11574-11588 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. O’Shea, “Assisted reproductive technology - what's new and what's important?” Aust. Fam. Physician 41, 7 (2012).
  2. V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
    [Crossref] [PubMed]
  3. A. Ajduk and M. Zernicka-Goetz, “Quality control of embryo development,” Mol. Aspects Med. 34(5), 903–918 (2013).
    [Crossref] [PubMed]
  4. P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Mol. Reprod. Dev. 41(1), 54–62 (1995).
    [Crossref] [PubMed]
  5. M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
    [Crossref] [PubMed]
  6. P. Xia, “Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality,” Hum. Reprod. 12(8), 1750–1755 (1997).
    [Crossref] [PubMed]
  7. W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
    [Crossref] [PubMed]
  8. Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
    [Crossref] [PubMed]
  9. L. Pikó and L. Matsumoto, “Number of mitochondria and some properties of mitochondrial DNA in the mouse egg,” Dev. Biol. 49(1), 1–10 (1976).
    [Crossref] [PubMed]
  10. B. D. Bavister and J. M. Squirrell, “Mitochondrial distribution and function in oocytes and early embryos,” Hum. Reprod. 15(Suppl 2), 189–198 (2000).
    [Crossref] [PubMed]
  11. H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
    [Crossref] [PubMed]
  12. S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
    [Crossref] [PubMed]
  13. R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
    [Crossref] [PubMed]
  14. M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
    [Crossref] [PubMed]
  15. A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
    [Crossref] [PubMed]
  16. J. Kahn, T. Elliott, and Z. P. Nagy, Morphometric analyses of embryos, Human Assisted Reproductive Technology - Future Trends in Laboratory and Clinical Practice (Cambridge University Press, 2011), p. 13.
  17. L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta 32(Suppl 3), S257–S263 (2011).
    [Crossref] [PubMed]
  18. C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
    [Crossref] [PubMed]
  19. A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
    [Crossref] [PubMed]
  20. P. Yu, L. Peng, M. Mustata, J. J. Turek, M. R. Melloch, and D. D. Nolte, “Time-dependent speckle in holographic optical coherence imaging and the health of tumor tissue,” Opt. Lett. 29(1), 68–70 (2004).
    [Crossref] [PubMed]
  21. K. Jeong, J. J. Turek, and D. D. Nolte, “Imaging motility contrast in digital holography of tissue response to cytoskeletal anti-cancer drugs,” Opt. Express 15, 14057 (2007).
    [Crossref] [PubMed]
  22. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-Domain Digital Holographic Optical Coherence Imaging of Living Tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
    [Crossref] [PubMed]
  23. D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
    [Crossref] [PubMed]
  24. K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
    [Crossref] [PubMed]
  25. D. D. Nolte, R. An, J. J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
    [Crossref] [PubMed]
  26. R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
    [Crossref] [PubMed]
  27. R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell (Taylor & Francis Group, 2009).
  28. D. Bray, Cell Movements: From Molecules to Motility (Garland Science, 2000).
  29. K. Y. Cha and R. C. Chian, “Maturation in vitro of immature human oocytes for clinical use,” Hum. Reprod. Update 4(2), 103–120 (1998).
    [Crossref] [PubMed]
  30. N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
    [Crossref] [PubMed]
  31. K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
    [Crossref] [PubMed]
  32. R. B. Gilchrist and J. G. Thompson, “Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro,” Theriogenology 67(1), 6–15 (2007).
    [Crossref] [PubMed]
  33. R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
    [Crossref] [PubMed]

2014 (1)

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

2013 (3)

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

A. Ajduk and M. Zernicka-Goetz, “Quality control of embryo development,” Mol. Aspects Med. 34(5), 903–918 (2013).
[Crossref] [PubMed]

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

2012 (3)

C. O’Shea, “Assisted reproductive technology - what's new and what's important?” Aust. Fam. Physician 41, 7 (2012).

D. D. Nolte, R. An, J. J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
[Crossref] [PubMed]

2011 (3)

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta 32(Suppl 3), S257–S263 (2011).
[Crossref] [PubMed]

2010 (2)

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[Crossref] [PubMed]

2008 (1)

R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (2)

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

2001 (2)

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

2000 (1)

B. D. Bavister and J. M. Squirrell, “Mitochondrial distribution and function in oocytes and early embryos,” Hum. Reprod. 15(Suppl 2), 189–198 (2000).
[Crossref] [PubMed]

1998 (1)

K. Y. Cha and R. C. Chian, “Maturation in vitro of immature human oocytes for clinical use,” Hum. Reprod. Update 4(2), 103–120 (1998).
[Crossref] [PubMed]

1997 (1)

P. Xia, “Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality,” Hum. Reprod. 12(8), 1750–1755 (1997).
[Crossref] [PubMed]

1995 (1)

P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Mol. Reprod. Dev. 41(1), 54–62 (1995).
[Crossref] [PubMed]

1976 (1)

L. Pikó and L. Matsumoto, “Number of mitochondria and some properties of mitochondrial DNA in the mouse egg,” Dev. Biol. 49(1), 1–10 (1976).
[Crossref] [PubMed]

Ajduk, A.

A. Ajduk and M. Zernicka-Goetz, “Quality control of embryo development,” Mol. Aspects Med. 34(5), 903–918 (2013).
[Crossref] [PubMed]

An, R.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. J. Turek, and K. Jeong, “Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture,” Biomed. Opt. Express 3(11), 2825–2841 (2012).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

Au, H. K.

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Avramova, L.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Baer, T. M.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Bavister, B. D.

B. D. Bavister and J. M. Squirrell, “Mitochondrial distribution and function in oocytes and early embryos,” Hum. Reprod. 15(Suppl 2), 189–198 (2000).
[Crossref] [PubMed]

Behr, B.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Betts, D. H.

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Blondin, P.

P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Mol. Reprod. Dev. 41(1), 54–62 (1995).
[Crossref] [PubMed]

Bossert, N. L.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Cha, K. Y.

K. Y. Cha and R. C. Chian, “Maturation in vitro of immature human oocytes for clinical use,” Hum. Reprod. Update 4(2), 103–120 (1998).
[Crossref] [PubMed]

Chang, S. J.

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Chen, A. A.

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

Chian, R. C.

K. Y. Cha and R. C. Chian, “Maturation in vitro of immature human oocytes for clinical use,” Hum. Reprod. Update 4(2), 103–120 (1998).
[Crossref] [PubMed]

De Jonge, C. J.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

de Los Santos, M. J.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Eichenlaub-Ritter, U.

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

El Shourbagy, S. H.

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

Freitas, M.

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

Garrido, N.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Gilchrist, R. B.

R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
[Crossref] [PubMed]

R. B. Gilchrist and J. G. Thompson, “Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro,” Theriogenology 67(1), 6–15 (2007).
[Crossref] [PubMed]

Gonçalves, P. B.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Hackett, R. J.

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

Hall, V.

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Herrero, J.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Hinrichs, K.

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Hsieh, R. H.

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Hutzler, P.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Hyttel, P.

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Jeong, K.

Kao, S. H.

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

Katagiri, S.

M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
[Crossref] [PubMed]

Keefe, D. L.

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

Kimura, N.

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Konno, Y.

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Lane, M.

R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
[Crossref] [PubMed]

Lazzari, G.

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Lee, K.

K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
[Crossref] [PubMed]

Loewke, K. E.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Machado, S. A.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Machaty, Z.

K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
[Crossref] [PubMed]

Matsumoto, H.

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Matsumoto, L.

L. Pikó and L. Matsumoto, “Number of mitochondria and some properties of mitochondrial DNA in the mouse egg,” Dev. Biol. 49(1), 1–10 (1976).
[Crossref] [PubMed]

Mehnert, C.

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

Melloch, M. R.

Meng, L.

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

Merrill, D.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Meseguer, M.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Miyoshi, K.

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Mustata, M.

Nagano, M.

M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
[Crossref] [PubMed]

Nagy, Z. P.

L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta 32(Suppl 3), S257–S263 (2011).
[Crossref] [PubMed]

Nel-Themaat, L.

L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta 32(Suppl 3), S257–S263 (2011).
[Crossref] [PubMed]

Nolte, D. D.

O’Shea, C.

C. O’Shea, “Assisted reproductive technology - what's new and what's important?” Aust. Fam. Physician 41, 7 (2012).

Odenbourg, R.

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

Peng, L.

Pikó, L.

L. Pikó and L. Matsumoto, “Number of mitochondria and some properties of mitochondrial DNA in the mouse egg,” Dev. Biol. 49(1), 1–10 (1976).
[Crossref] [PubMed]

Ramsing, N.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Reijo Pera, R. A.

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Robinson, J. P.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Sato, E.

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Shen, S.

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

Sirard, M. A.

P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Mol. Reprod. Dev. 41(1), 54–62 (1995).
[Crossref] [PubMed]

Spikings, E. C.

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

Squirrell, J. M.

B. D. Bavister and J. M. Squirrell, “Mitochondrial distribution and function in oocytes and early embryos,” Hum. Reprod. 15(Suppl 2), 189–198 (2000).
[Crossref] [PubMed]

St John, J. C.

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

Stalf, T.

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

Stojkovic, M.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Stojkovic, P.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Sturgis, J.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Suraj, V.

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

Takahashi, Y.

M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
[Crossref] [PubMed]

Tan, L.

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

Tejera, A.

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

Thompson, J. G.

R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
[Crossref] [PubMed]

R. B. Gilchrist and J. G. Thompson, “Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro,” Theriogenology 67(1), 6–15 (2007).
[Crossref] [PubMed]

Tinneberg, H. R.

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

Tsai, N. M.

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Tsiper, M.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Turek, J.

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

Turek, J. J.

Tzeng, C. R.

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Wang, C.

K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
[Crossref] [PubMed]

Wang, W. H.

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

Wei, Y. H.

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

Wolf, E.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Wong, C. C.

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Xia, P.

P. Xia, “Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality,” Hum. Reprod. 12(8), 1750–1755 (1997).
[Crossref] [PubMed]

Yeh, T. S.

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

Yu, P.

Zakhartchenko, V.

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

Zernicka-Goetz, M.

A. Ajduk and M. Zernicka-Goetz, “Quality control of embryo development,” Mol. Aspects Med. 34(5), 903–918 (2013).
[Crossref] [PubMed]

Ann. N. Y. Acad. Sci. (1)

H. K. Au, T. S. Yeh, S. H. Kao, C. R. Tzeng, and R. H. Hsieh, “Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos,” Ann. N. Y. Acad. Sci. 1042(1), 177–185 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Aust. Fam. Physician (1)

C. O’Shea, “Assisted reproductive technology - what's new and what's important?” Aust. Fam. Physician 41, 7 (2012).

Biol. Reprod. (2)

M. Stojkovic, S. A. Machado, P. Stojkovic, V. Zakhartchenko, P. Hutzler, P. B. Gonçalves, and E. Wolf, “Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture,” Biol. Reprod. 64(3), 904–909 (2001).
[Crossref] [PubMed]

N. Kimura, Y. Konno, K. Miyoshi, H. Matsumoto, and E. Sato, “Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation,” Biol. Reprod. 66(3), 707–717 (2002).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Dev. Biol. (2)

K. Lee, C. Wang, and Z. Machaty, “STIM1 is required for Ca2+ signaling during mammalian fertilization,” Dev. Biol. 367(2), 154–162 (2012).
[Crossref] [PubMed]

L. Pikó and L. Matsumoto, “Number of mitochondria and some properties of mitochondrial DNA in the mouse egg,” Dev. Biol. 49(1), 1–10 (1976).
[Crossref] [PubMed]

Fertil. Steril. (4)

W. H. Wang, L. Meng, R. J. Hackett, R. Odenbourg, and D. L. Keefe, “The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes,” Fertil. Steril. 75(2), 348–353 (2001).
[Crossref] [PubMed]

A. Tejera, J. Herrero, M. J. de Los Santos, N. Garrido, N. Ramsing, and M. Meseguer, “Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens,” Fertil. Steril. 96(3), 618 (2011).
[Crossref] [PubMed]

R. H. Hsieh, N. M. Tsai, H. K. Au, S. J. Chang, Y. H. Wei, and C. R. Tzeng, “Multiple rearrangements of mitochondrial DNA in unfertilized human oocytes,” Fertil. Steril. 77(5), 1012–1017 (2002).
[Crossref] [PubMed]

A. A. Chen, L. Tan, V. Suraj, R. A. Reijo Pera, and S. Shen, “Biomarkers identified with time-lapse imaging: discovery, validation, and practical application,” Fertil. Steril. 99(4), 1035–1043 (2013).
[Crossref] [PubMed]

Hum. Reprod. (3)

P. Xia, “Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality,” Hum. Reprod. 12(8), 1750–1755 (1997).
[Crossref] [PubMed]

Y. Shen, T. Stalf, C. Mehnert, U. Eichenlaub-Ritter, and H. R. Tinneberg, “High magnitude of light retardation by the zona pellucida is associated with conception cycles,” Hum. Reprod. 20(6), 1596–1606 (2005).
[Crossref] [PubMed]

B. D. Bavister and J. M. Squirrell, “Mitochondrial distribution and function in oocytes and early embryos,” Hum. Reprod. 15(Suppl 2), 189–198 (2000).
[Crossref] [PubMed]

Hum. Reprod. Update (2)

K. Y. Cha and R. C. Chian, “Maturation in vitro of immature human oocytes for clinical use,” Hum. Reprod. Update 4(2), 103–120 (1998).
[Crossref] [PubMed]

R. B. Gilchrist, M. Lane, and J. G. Thompson, “Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality,” Hum. Reprod. Update 14(2), 159–177 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

D. D. Nolte, R. An, J. Turek, and K. Jeong, “Holographic tissue dynamics spectroscopy,” J. Biomed. Opt. 16(8), 087004 (2011).
[Crossref] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography,” J. Biomed. Opt. 15(3), 030514 (2010).
[Crossref] [PubMed]

J. Biomol. Screen. (1)

R. An, D. Merrill, L. Avramova, J. Sturgis, M. Tsiper, J. P. Robinson, J. Turek, and D. D. Nolte, “Phenotypic Profiling of Raf Inhibitors and Mitochondrial Toxicity in 3D Tissue Using Biodynamic Imaging,” J. Biomol. Screen. 19(4), 526–537 (2014).
[Crossref] [PubMed]

Mol. Aspects Med. (1)

A. Ajduk and M. Zernicka-Goetz, “Quality control of embryo development,” Mol. Aspects Med. 34(5), 903–918 (2013).
[Crossref] [PubMed]

Mol. Reprod. Dev. (1)

P. Blondin and M. A. Sirard, “Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes,” Mol. Reprod. Dev. 41(1), 54–62 (1995).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

C. C. Wong, K. E. Loewke, N. L. Bossert, B. Behr, C. J. De Jonge, T. M. Baer, and R. A. Reijo Pera, “Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage,” Nat. Biotechnol. 28(10), 1115–1121 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Placenta (1)

L. Nel-Themaat and Z. P. Nagy, “A review of the promises and pitfalls of oocyte and embryo metabolomics,” Placenta 32(Suppl 3), S257–S263 (2011).
[Crossref] [PubMed]

Reproduction (1)

S. H. El Shourbagy, E. C. Spikings, M. Freitas, and J. C. St John, “Mitochondria directly influence fertilisation outcome in the pig,” Reproduction 131(2), 233–245 (2006).
[Crossref] [PubMed]

Theriogenology (1)

R. B. Gilchrist and J. G. Thompson, “Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro,” Theriogenology 67(1), 6–15 (2007).
[Crossref] [PubMed]

Vet. J. (1)

V. Hall, K. Hinrichs, G. Lazzari, D. H. Betts, and P. Hyttel, “Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals,” Vet. J. 197(2), 128–142 (2013).
[Crossref] [PubMed]

Zygote (1)

M. Nagano, S. Katagiri, and Y. Takahashi, “Relationship between bovine oocyte morphology and in vitro developmental potential,” Zygote 14(1), 53–61 (2006).
[Crossref] [PubMed]

Other (3)

J. Kahn, T. Elliott, and Z. P. Nagy, Morphometric analyses of embryos, Human Assisted Reproductive Technology - Future Trends in Laboratory and Clinical Practice (Cambridge University Press, 2011), p. 13.

R. Phillips, J. Kondev, and J. Theriot, Physical Biology of the Cell (Taylor & Francis Group, 2009).

D. Bray, Cell Movements: From Molecules to Motility (Garland Science, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The setup sketch of the biodynamic imaging system.

Fig. 2
Fig. 2

Cumulus-oocyte complexes (COCs). A) is an optical micrograph of an immature porcine oocyte. B) is an optical micrograph of a matured porcine oocyte. C) is an optical coherence image (OCI) that is depth-gated to the center of the COC, but no oocyte is recognizable within the fully developed speckle. D) is a motility contrast image (MCI) of the COC midsection, and E) is a volumetric motility contrast image showing the high-mobility core of the complex.

Fig. 3
Fig. 3

Motility contrast image collage of immature and matured COCs showing the expansion of the cumulus investment after maturation. The scale bar is 250 microns.

Fig. 4
Fig. 4

a) Correlation between the temporal contrast of the oocyte relative to the temporal contrast of the cumulus cells for immature and mature COCs. There is a wide scatter in the temporal contrast among the samples, but maturation increases the average temporal contrast of each subset. b) ROC based on the temporal contrast of the cumulus shell.

Fig. 5
Fig. 5

Power spectra averaged over 30 COCs. a) Average power spectra of the matured relative to immature oocytes. b) Average power spectra of the matured cumulus shell relative to immature shell.

Fig. 6
Fig. 6

Power spectrum of a matured oocyte inside the cumulus vestment of the COCs (averaged over 30 COCs) compared with the power spectrum of denuded unfertilized oocytes (averaged over 34 unfertilized oocytes).

Fig. 7
Fig. 7

Power spectra of unfertilized and fertilized oocytes. a) shows several averages of spectra of fertilized and unfertilized oocytes. b) shows the total averages between fertilized and unfertilized oocytes. The mean frequency decreases by 33% when the oocyte is fertilized.

Fig. 8
Fig. 8

a) PCA on normal and heat-shocked unfertilized oocytes. b) PCA on fertilized and unfertilized oocytes.

Fig. 9
Fig. 9

Motility contrast images of several multi-cell zygotes compared with undivided, but healthy, zygotes. The multicell samples have extremely high temporal contrast with values exceeding unity.

Fig. 10
Fig. 10

a) successive OCI images of two healthy blastocysts and one unhealthy blastocyst; b) The intensity change fluctuation over time of the same healthy blastocysts and unhealthy blastocyst; c) the max intensity map of the same healthy blastocysts and unhealthy blastocyst.

Tables (2)

Tables Icon

Table 1 PCA coefficients for heat shock study

Tables Icon

Table 2 PCA coefficients for unfertilized versus fertilized oocytes

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Z= i=1 N X i
X i 2 =A v 2 exp( v 2 /2 v 0 2 ) dv 0 t 2 exp(t/τ) dt =2 v 0 2 τ 2
E[ Z 2 ]=N X i 2 =2N v 0 2 τ 2
E[ Z 2 ]=2N v 0 2 τt=2Dt
D= v 0 2 τ
f d = q 2 v 0 2 t 0 2π
f D = q v 0 2π
q v 0 t 0 >1 Dopplerlike q v 0 t 0 <1 Diffusionlike
D(ω,t)= S(ω,t)S(ω, t 0 ) S(ω, t 0 )
S(ω)= [ ( N 0 1+ (ω/ ω q ) s ) 2 + ( N y ) 2 ] 1/2

Metrics