Abstract

Longitudinal Chromatic Aberration (LCA) influences the optical quality of the eye. However, the reported LCA varies across studies, likely associated to differences in the measurement techniques. We present LCA measured in subjects using wavefront sensing, double-pass retinal images, and psychophysical methods with a custom-developed polychromatic Adaptive Optics system in a wide spectral range (450-950 nm), with control of subjects’ natural aberrations. LCA measured psychophysically was significantly higher than that from reflectometric techniques (1.51 D vs 1.00 D in the 488-700 nm range). Ours results indicate that the presence of natural aberrations is not the cause for the discrepancies across techniques.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Verification of the lack of correlation between age and longitudinal chromatic aberrations of the human eye from the visible to the infrared

Masashi Nakajima, Takahiro Hiraoka, Yoko Hirohara, Tetsuro Oshika, and Toshifumi Mihashi
Biomed. Opt. Express 6(7) 2676-2694 (2015)

Longitudinal chromatic aberration of the human infant eye

Jingyun Wang, T. Rowan Candy, Danielle F. W. Teel, and Robert J. Jacobs
J. Opt. Soc. Am. A 25(9) 2263-2270 (2008)

Visual effect of the combined correction of spherical and longitudinal chromatic aberrations

Pablo Artal, Silvestre Manzanera, Patricia Piers, and Henk Weeber
Opt. Express 18(2) 1637-1648 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
    [Crossref] [PubMed]
  2. K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
    [Crossref] [PubMed]
  3. W. N. Charman, Optics of the Human Eye, Visual Optics and Instrumentation (CRC Press, 1991).
  4. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [Crossref] [PubMed]
  5. P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
    [Crossref] [PubMed]
  6. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
    [Crossref] [PubMed]
  7. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
    [Crossref] [PubMed]
  8. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
    [Crossref] [PubMed]
  9. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
    [Crossref] [PubMed]
  10. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, “Chromatic aberration correction of the human eye for retinal imaging in the near infrared,” Opt. Express 14(13), 6213–6225 (2006).
    [Crossref] [PubMed]
  11. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
    [Crossref] [PubMed]
  12. X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
    [Crossref] [PubMed]
  13. T. Young, “An Account of Some Cases of the Production of Colours, not Hitherto Described,” Philos. Trans. R. Soc. Lond. 92(0), 387–397 (1802).
    [Crossref]
  14. H. von Helmholtz, Treatise on Physiological Optics (1866), translation from third German edition (1909) ed., The classics of Ophthalmology library (University of Pennsylvania, 2001).
  15. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
    [Crossref] [PubMed]
  16. C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
    [Crossref] [PubMed]
  17. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
    [Crossref] [PubMed]
  18. M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
    [Crossref] [PubMed]
  19. J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
    [Crossref] [PubMed]
  20. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37(5), 321–336 (1947).
    [Crossref] [PubMed]
  21. B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25(11), 1747–1753 (1985).
    [Crossref] [PubMed]
  22. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
    [Crossref] [PubMed]
  23. D. A. Atchison and G. Smith, Optics of the human eye (Butterworth Heinemann, 2000), Vol. 17.
  24. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [Crossref] [PubMed]
  25. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
    [Crossref] [PubMed]
  26. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
    [Crossref] [PubMed]
  27. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [Crossref] [PubMed]
  28. P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
    [Crossref] [PubMed]
  29. L. N. Thibos, A. Bradley, and D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30(16), 2079–2087 (1991).
    [Crossref] [PubMed]
  30. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [Crossref] [PubMed]
  31. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19(3), 620–628 (2002).
    [Crossref] [PubMed]
  32. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
    [Crossref] [PubMed]
  33. L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
    [Crossref] [PubMed]
  34. P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
    [Crossref] [PubMed]
  35. Fianium, “Fianium. Supercontinuum sources” (Fianium Ltd, 2014), retrieved 2012, http://www.fianium.com/ .
  36. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref]
  37. “American National Standar for Safe Use of Lasers, ANSI Z.136.1-2007,” (American National Standards Institute 2007).
  38. J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
    [Crossref] [PubMed]
  39. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
    [Crossref] [PubMed]
  40. S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
    [Crossref] [PubMed]
  41. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
    [PubMed]
  42. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  43. M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
    [Crossref] [PubMed]
  44. L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
    [Crossref] [PubMed]
  45. L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
    [Crossref] [PubMed]
  46. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
    [Crossref] [PubMed]
  47. T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
    [Crossref] [PubMed]
  48. S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
    [Crossref] [PubMed]
  49. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
    [Crossref] [PubMed]
  50. A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
    [Crossref] [PubMed]
  51. M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
    [Crossref] [PubMed]
  52. V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
    [Crossref] [PubMed]
  53. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).
    [Crossref] [PubMed]
  54. S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
    [Crossref] [PubMed]
  55. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
    [Crossref] [PubMed]
  56. E. Fernández and W. Drexler, “Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography,” Opt. Express 13(20), 8184–8197 (2005).
    [Crossref] [PubMed]
  57. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express 14(25), 12230–12242 (2006).
    [Crossref] [PubMed]

2013 (2)

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

2012 (2)

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref] [PubMed]

2011 (3)

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

2010 (2)

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

2008 (3)

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (2)

2005 (3)

2004 (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

2003 (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

2002 (3)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19(3), 620–628 (2002).
[Crossref] [PubMed]

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

1999 (3)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref] [PubMed]

1998 (2)

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

1997 (2)

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref] [PubMed]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
[Crossref] [PubMed]

1996 (1)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

1995 (2)

1994 (2)

1992 (1)

1991 (2)

L. N. Thibos, A. Bradley, and D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30(16), 2079–2087 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

1989 (1)

1988 (1)

1986 (1)

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

1985 (2)

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25(11), 1747–1753 (1985).
[Crossref] [PubMed]

1984 (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

1982 (1)

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

1976 (2)

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

1957 (1)

1947 (1)

1802 (1)

T. Young, “An Account of Some Cases of the Production of Colours, not Hitherto Described,” Philos. Trans. R. Soc. Lond. 92(0), 387–397 (1802).
[Crossref]

Adrian, W. K.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Ansari, R.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Artal, P.

Atchison, D. A.

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

Bagci, A. M.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Bedford, R. E.

Blair, M.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Blair, N. P.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Bradley, A.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref] [PubMed]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref] [PubMed]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30(16), 2079–2087 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

Brainard, D. H.

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref] [PubMed]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Chisholm, W.

Cox, I. G.

de Gracia, P.

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

Delori, F. C.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref]

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28(6), 1061–1077 (1989).
[Crossref] [PubMed]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

Dorronsoro, C.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

Dowler, J.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Drexler, W.

Duker, J. S.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Durán, S.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Elsner, A. E.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

Fernández, E.

Fernández, E. J.

Fujimoto, J. G.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Gilmartin, B.

B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25(11), 1747–1753 (1985).
[Crossref] [PubMed]

Graef, K.

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref] [PubMed]

Gray, D. C.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Grieve, K.

Griffin, D. R.

Guirao, A.

Hermann, B.

Hogan, R. E.

B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25(11), 1747–1753 (1985).
[Crossref] [PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Hunter, J. J.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Karampelas, M.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Keane, P. A.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

Lidkea, B.

Llorente, L.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

López-Gil, N.

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

Manjunath, V.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Marcos, S.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref] [PubMed]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref] [PubMed]

Masella, B.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Mathur, A.

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

McMahon, M. J.

Merigan, W. H.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Millodot, M.

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

Mordi, J. A.

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Moreno, E.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

Morgan, J. I.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref] [PubMed]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
[Crossref] [PubMed]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
[Crossref] [PubMed]

Papastefanou, V. P.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Pérez-Merino, P.

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

Pflibsen, K. P.

Porter, J.

Povazay, B.

Prieto, P.

Prieto, P. M.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Ravikumar, S.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref] [PubMed]

Roorda, A.

Rynders, M.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

Sadda, S. R.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Salmon, T. O.

Sawides, L.

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Schaeffel, F.

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Shahidi, M.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Sim, D. A.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Sliney, D. H.

Still, D. L.

Taha, M.

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

Thibos, L.

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Thibos, L. N.

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref] [PubMed]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref] [PubMed]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref] [PubMed]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and D. L. Still, “Interferometric measurement of visual acuity and the effect of ocular chromatic aberration,” Appl. Opt. 30(16), 2079–2087 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Tiruveedhula, P.

Tufail, A.

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Unterhuber, A.

Vinas, M.

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

Wald, G.

Ware, C.

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

Webb, R. H.

Webster, M.

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

Webster, M. A.

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

Weiter, J. J.

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

Williams, D. R.

Wolfe, R.

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

Wyszecki, G.

Ye, M.

Young, T.

T. Young, “An Account of Some Cases of the Production of Colours, not Hitherto Described,” Philos. Trans. R. Soc. Lond. 92(0), 387–397 (1802).
[Crossref]

Zelkha, R.

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref] [PubMed]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

Zhang, X. X.

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

Zhang, Y.

Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. (1)

M. Millodot, “The influence of age on the chronatic aberration of the eye,” Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol. 198(3), 235–243 (1976).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

V. Manjunath, M. Taha, J. G. Fujimoto, and J. S. Duker, “Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography,” Am. J. Ophthalmol. 150(3), 325–329 (2010).
[Crossref] [PubMed]

A. M. Bagci, M. Shahidi, R. Ansari, M. Blair, N. P. Blair, and R. Zelkha, “Thickness profiles of retinal layers by optical coherence tomography image segmentation,” Am. J. Ophthalmol. 146(5), 679–687 (2008).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62(12), 864–869 (1985).
[Crossref] [PubMed]

Appl. Opt. (3)

Br. J. Ophthalmol. (1)

M. Karampelas, D. A. Sim, P. A. Keane, V. P. Papastefanou, S. R. Sadda, A. Tufail, and J. Dowler, “Evaluation of retinal pigment epithelium-Bruch’s membrane complex thickness in dry age-related macular degeneration using optical coherence tomography,” Br. J. Ophthalmol. 97(10), 1256–1261 (2013).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefes Arch. Clin. Exp. Ophthalmol. 218(1), 39–41 (1982).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, and D. R. Williams, “Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium,” Invest. Ophthalmol. Vis. Sci. 49(8), 3715–3729 (2008).
[Crossref] [PubMed]

P. Pérez-Merino, C. Dorronsoro, L. Llorente, S. Durán, I. Jiménez-Alfaro, and S. Marcos, “In vivo chromatic aberration in eyes implanted with intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 54(4), 2654–2661 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (11)

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12(10), 2348–2357 (1995).
[Crossref] [PubMed]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12(2), 195–201 (1995).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19(3), 620–628 (2002).
[Crossref] [PubMed]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
[Crossref] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[Crossref] [PubMed]

S. Ravikumar, L. N. Thibos, and A. Bradley, “Calculation of retinal image quality for polychromatic light,” J. Opt. Soc. Am. A 25(10), 2395–2407 (2008).
[Crossref] [PubMed]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, “Double-pass and interferometric measures of the optical quality of the eye,” J. Opt. Soc. Am. A 11(12), 3123–3135 (1994).
[Crossref] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref] [PubMed]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16(5), 995–1004 (1999).
[Crossref] [PubMed]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14(5), 961–971 (1997).
[Crossref] [PubMed]

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members. Vision science and its applications, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18(5), S652–S660 (2002).
[PubMed]

J. Vis. (5)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

L. Sawides, S. Marcos, S. Ravikumar, L. Thibos, A. Bradley, and M. Webster, “Adaptation to astigmatic blur,” J. Vis. 10(12), 22 (2010).
[Crossref] [PubMed]

L. Sawides, P. de Gracia, C. Dorronsoro, M. Webster, and S. Marcos, “Adapting to blur produced by ocular high-order aberrations,” J. Vis. 11(7), 21 (2011).
[Crossref] [PubMed]

P. de Gracia, S. Marcos, A. Mathur, and D. A. Atchison, “Contrast sensitivity benefit of adaptive optics correction of ocular aberrations,” J. Vis. 11(12), 5 (2011).
[Crossref] [PubMed]

K. Graef and F. Schaeffel, “Control of accommodation by longitudinal chromatic aberration and blue cones,” J. Vis. 12(1), 14 (2012).
[Crossref] [PubMed]

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye’s defence against chromatic blur,” Nature 417(6885), 174–176 (2002).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

P. A. Howarth, “The lateral chromatic aberration of the eye,” Ophthalmic Physiol. Opt. 4(3), 223–226 (1984).
[Crossref] [PubMed]

Opt. Express (5)

Optom. Vis. Sci. (3)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, “Aberrations of the human eye in visible and near infrared illumination,” Optom. Vis. Sci. 80(1), 26–35 (2003).
[Crossref] [PubMed]

X. Zhang, L. N. Thibos, and A. Bradley, “Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration,” Optom. Vis. Sci. 74(7), 563–569 (1997).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vis. Sci. 68(8), 599–607 (1991).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. (1)

T. Young, “An Account of Some Cases of the Production of Colours, not Hitherto Described,” Philos. Trans. R. Soc. Lond. 92(0), 387–397 (1802).
[Crossref]

PLoS ONE (2)

L. Sawides, P. de Gracia, C. Dorronsoro, M. A. Webster, and S. Marcos, “Vision is adapted to the natural level of blur present in the retinal image,” PLoS ONE 6(11), e27031 (2011).
[Crossref] [PubMed]

M. Vinas, L. Sawides, P. de Gracia, and S. Marcos, “Perceptual Adaptation to the Correction of Natural Astigmatism,” PLoS ONE 7(9), e46361 (2012).
[Crossref] [PubMed]

Vision Res. (9)

A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of sub-retinal structures in the human ocular fundus,” Vision Res. 36(1), 191–205 (1996).
[Crossref] [PubMed]

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16(9), 999–1005 (1976).
[Crossref] [PubMed]

M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38(4), 513–522 (1998).
[Crossref] [PubMed]

B. Gilmartin and R. E. Hogan, “The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm,” Vision Res. 25(11), 1747–1753 (1985).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999).
[Crossref] [PubMed]

P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26(2), 361–366 (1986).
[Crossref] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res. 30(1), 33–49 (1990).
[Crossref] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res. 41(28), 3861–3871 (2001).
[Crossref] [PubMed]

Other (5)

W. N. Charman, Optics of the Human Eye, Visual Optics and Instrumentation (CRC Press, 1991).

D. A. Atchison and G. Smith, Optics of the human eye (Butterworth Heinemann, 2000), Vol. 17.

H. von Helmholtz, Treatise on Physiological Optics (1866), translation from third German edition (1909) ed., The classics of Ophthalmology library (University of Pennsylvania, 2001).

“American National Standar for Safe Use of Lasers, ANSI Z.136.1-2007,” (American National Standards Institute 2007).

Fianium, “Fianium. Supercontinuum sources” (Fianium Ltd, 2014), retrieved 2012, http://www.fianium.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Custom-made polychromatic adaptive-optics setup.
Fig. 2
Fig. 2 (a) Wave aberrations map for astigmatism and HOA for selected wavelengths in Subject #3 with natural aberrations (upper row) and AO-correction (lower row). (b) Corresponding RMS. Data are for 6-mm pupils.
Fig. 3
Fig. 3 (a) Example of experimental through-focus double-pass retinal images for subject #S1 at 555 nm with natural aberrations. (b) Example of simulated through-focus PSF at 555 nm for #S2 under natural aberrations, and (c) under AO-correction. (d) Chromatic difference of focus obtained from series of double-pass images at all measured wavelengths for subject #S3, with natural aberrations (Red triangles), and AO-correction (Green circles). (e) Through-focus Strehl Ratio (SR) calculated from measured wave aberrations at each wavelength for subject #S2 under natural aberrations, and (f) under AO-correction.
Fig. 4
Fig. 4 Chromatic difference of focus (a) from subjective best focus; (b) from series of double-pass retinal images; (c) from the defocus Zernike coefficient of measured wave aberrations, at different wavelengths. (a-c) Under natural aberrations. (d-e) As in (a-c), but with AO-correction. Data are referred to the best focus at 555 nm for each technique, set as zero defocus.
Fig. 5
Fig. 5 (a) Chromatic difference of focus for all 4 techniques: psychophysical, purple; retinal images, yellow; wavefront sensing/defocus Zernike term, green; wavefront sensing/Strehl Ratio, magenta. Data are averaged across subjects; (a) from measurements with natural aberrations. (b) As in (a) butfrom measurements with AO-correction of natural aberrations. Data are referred to 555 nm by shifting the polynomial regressions of the measured data.
Fig. 6
Fig. 6 LCA averaged across subjects from (a) subjective best focus, (b) retinal images, (c) wavefront sensing and (d) Strehl Ratio for the different spectral ranges: VIS, NIR and TOTAL. Solid bars indicate Natural aberrations, and dashed bars indicate AO-correction; (*) stands for statistically significant differences (p = 0.02) Error bars stand for standard deviations of repeated measurements for subjective LCA and standard deviation across subjects for the other techniques.
Fig. 7
Fig. 7 (a) Chromatic difference of focus from the psychophysical measurements of the current study (purple), the predictions from the Indiana chromatic reduced eye model (black), and psychophysical data in the literature (blue) in the visible range. (b) Chromatic difference of focus from the reflectometric measurements (yellow, from retinal images; green, from wavefront sensing) of the current study, the predictions from the Indiana chromatic reduced eye model (black), and reflectometric data in the literature (orange) in the visible and NIR range. The measured chromatic range differed across studies, and it is indicated by the symbols in the end of the regression curves. The numbers indicate the corresponding literature reference (see legend). Data are referred to zero defocus at 555 nm.

Tables (1)

Tables Icon

Table 1 Chromatic difference of focus

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D= 4. C 2 0 . 3 / r 2

Metrics