Abstract

We analyze broadband near-infrared spectroscopic measurements obtained from newborn piglets subjected to hypoxia-ischemia and we aim to identify optimal wavelength combinations for monitoring cerebral tissue chromophores. We implement an optimization routine based on the genetic algorithm to perform a heuristic search for discrete wavelength combinations that can provide accurate concentration information when benchmarked against the gold standard of 121 wavelengths. The results indicate that it is possible to significantly reduce the number of measurement wavelengths used in conjunction with spectroscopic algorithms and still achieve a high performance in estimating changes in concentrations of oxyhemoglobin, deoxyhemoglobin, and oxidized cytochrome c oxidase. While the use of a 3-wavelength combination leads to mean recovery errors of up to 10%, these errors drop to less than 4% with 4 or 5 wavelengths and to even less than 2% with 8 wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy

Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B. Morrison, Ilias Tachtsidis, Keith St. Lawrence, and Mamadou Diop
Biomed. Opt. Express 9(6) 2588-2603 (2018)

A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury

Gemma Bale, Subhabrata Mitra, Judith Meek, Nicola Robertson, and Ilias Tachtsidis
Biomed. Opt. Express 5(10) 3450-3466 (2014)

Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults

Christina Kolyva, Ilias Tachtsidis, Arnab Ghosh, Tracy Moroz, Chris E. Cooper, Martin Smith, and Clare E. Elwell
Biomed. Opt. Express 3(10) 2550-2566 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Nioka and B. Chance, “NIR spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4(5), 497–512 (2005).
    [Crossref] [PubMed]
  2. T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
    [Crossref] [PubMed]
  3. M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4452–4469 (2011).
    [Crossref] [PubMed]
  4. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
    [PubMed]
  5. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
    [Crossref] [PubMed]
  6. J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
    [Crossref] [PubMed]
  7. M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
    [Crossref] [PubMed]
  8. G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
    [Crossref] [PubMed]
  9. M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
    [Crossref] [PubMed]
  10. C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
    [Crossref] [PubMed]
  11. A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
    [Crossref] [PubMed]
  12. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
    [Crossref] [PubMed]
  13. C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
    [PubMed]
  14. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
    [Crossref] [PubMed]
  15. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997).
    [Crossref] [PubMed]
  16. J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
    [Crossref] [PubMed]
  17. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [Crossref] [PubMed]
  18. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
    [Crossref] [PubMed]
  19. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
    [Crossref] [PubMed]
  20. M. Mitchell, An Introduction to Genetic Algorithms (Massachusetts Institute of Technology, 1996).
  21. T. Madaan, “Computational investigation of optical spectroscopy algorithms to decouple optical measurements of brain oxygenation and metabolism,” M.S. Thesis, University College London (2012).
  22. K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
    [Crossref] [PubMed]
  23. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28(23), 2339–2341 (2003).
    [Crossref] [PubMed]
  24. K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
    [Crossref] [PubMed]
  25. N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin,” J. Biomed. Opt. 10(1), 011015 (2005).
    [Crossref] [PubMed]
  26. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005).
    [Crossref] [PubMed]
  27. S. Umeyama and T. Yamada, “New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization,” J. Biomed. Opt. 14(3), 034017 (2009).
    [Crossref] [PubMed]
  28. A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
    [Crossref] [PubMed]
  29. T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
    [Crossref] [PubMed]
  30. G. P. Luke and S. Y. Emelianov, “Optimization of in vivo spectroscopic photoacoustic imaging by smart optical wavelength selection,” Opt. Lett. 39(7), 2214–2217 (2014).
    [Crossref] [PubMed]
  31. J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
    [Crossref] [PubMed]
  32. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
    [Crossref] [PubMed]
  33. A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
    [Crossref] [PubMed]
  34. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  35. M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
    [Crossref] [PubMed]
  36. I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
    [Crossref] [PubMed]
  37. J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
    [Crossref] [PubMed]
  38. I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
    [Crossref] [PubMed]
  39. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
    [Crossref] [PubMed]
  40. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [Crossref] [PubMed]
  41. J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
    [Crossref] [PubMed]

2014 (7)

J. Li and L. Qiu, “Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy,” Biomed. Opt. Express 5(2), 587–595 (2014).
[Crossref] [PubMed]

G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
[Crossref] [PubMed]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

G. P. Luke and S. Y. Emelianov, “Optimization of in vivo spectroscopic photoacoustic imaging by smart optical wavelength selection,” Opt. Lett. 39(7), 2214–2217 (2014).
[Crossref] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

2013 (2)

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

2012 (3)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

2011 (4)

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4452–4469 (2011).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

2010 (2)

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
[Crossref] [PubMed]

2009 (1)

S. Umeyama and T. Yamada, “New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization,” J. Biomed. Opt. 14(3), 034017 (2009).
[Crossref] [PubMed]

2007 (3)

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

2005 (3)

S. Nioka and B. Chance, “NIR spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4(5), 497–512 (2005).
[Crossref] [PubMed]

N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin,” J. Biomed. Opt. 10(1), 011015 (2005).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005).
[Crossref] [PubMed]

2004 (2)

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (3)

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

1999 (1)

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

1998 (1)

C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
[PubMed]

1997 (2)

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997).
[Crossref] [PubMed]

1995 (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

1994 (1)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

1993 (2)

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

Amess, P. N.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Armstrong, J.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Arridge, S. R.

Baer, E.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Bainbridge, A.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Bale, G.

Boas, D. A.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

Boss, G. R.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Brenner, M.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Broad, K. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Broadhead, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Brown, J. Q.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Cady, E. B.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Chance, B.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

S. Nioka and B. Chance, “NIR spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4(5), 497–512 (2005).
[Crossref] [PubMed]

Choe, R.

Cooper, C. E.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
[PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

Cope, M.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

Corlu, A.

Correia, T.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
[Crossref] [PubMed]

Cuccia, D. J.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Culver, J. P.

Dell, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Delpy, D. T.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
[PubMed]

E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36(1), 21–31 (1997).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

Dhar, S.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Dubb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

Dunn, A. K.

Durduran, T.

Durkin, A. J.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Elliot, M. J.

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

Elwell, C.

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Elwell, C. E.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

Emelianov, S. Y.

Essenpreis, M.

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

Fang, Q.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

Faulkner, S. D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Firbank, M.

Franceschini, M. A.

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[PubMed]

Frangioni, J. V.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Ghosh, A.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

Gibson, A.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
[Crossref] [PubMed]

Gioux, S.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

Golay, X.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Hamaoka, T.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

Hebden, J.

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
[Crossref] [PubMed]

Highton, D.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

Hillman, E. M. C.

Hoskote, A.

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

Isom, G.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Jokerst, N. M.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Kim, J. G.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Kohl, M.

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Kohl-Bareis, M.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

Kolyva, C.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

Kreuter, K.

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Lee, J.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Lee, K.

Leung, T. S.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

Li, J.

Lo, J. Y.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Luke, G. P.

Mahon, S. B.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Matcher, S. J.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Mazhar, A.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

McCully, K. K.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

Meek, J.

Mitra, S.

Moroz, T.

Mukai, D.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Nemoto, E. M.

C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
[PubMed]

Nioka, S.

S. Nioka and B. Chance, “NIR spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4(5), 497–512 (2005).
[Crossref] [PubMed]

Niwayama, M.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

Obrig, H.

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Ogden, T. M.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

Okada, E.

Okui, N.

N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin,” J. Biomed. Opt. 10(1), 011015 (2005).
[Crossref] [PubMed]

Ordidge, R.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Palmer, G. M.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Papademetriou, M. D.

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

Patterson, S. E.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Penrice, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Peters, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Price, D.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Pritchard, C.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

Punwani, S.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Qiu, L.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Ramanujam, N.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Robertson, N.

Robertson, N. J.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Rockwood, G.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Schweiger, M.

Selb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

Smith, M.

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4452–4469 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Springett, R.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997).
[Crossref] [PubMed]

Steinbrink, J.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Stott, J. J.

Tachtsidis, I.

G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
[Crossref] [PubMed]

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults,” Biomed. Opt. Express 3(10), 2550–2566 (2012).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

Thavasothy, M.

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Thomas, D. L.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Tisdall, M.

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

Tisdall, M. M.

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

Tromberg, B. J.

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

Tyszczuk, L.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Uludag, K.

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Umeyama, S.

S. Umeyama and T. Yamada, “New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization,” J. Biomed. Opt. 14(3), 034017 (2009).
[Crossref] [PubMed]

van der Zee, P.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32(4), 418–425 (1993).
[Crossref] [PubMed]

Villringer, A.

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

Wenzel, R.

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

Wyatt, J.

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Yamada, T.

S. Umeyama and T. Yamada, “New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization,” J. Biomed. Opt. 14(3), 034017 (2009).
[Crossref] [PubMed]

Yodh, A. G.

Yoon, D.

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

Yu, B.

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Zhu, T.

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (3)

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, and D. T. Delpy, “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[Crossref] [PubMed]

A. Ghosh, I. Tachtsidis, C. Kolyva, D. Highton, C. Elwell, and M. Smith, “Normobaric hyperoxia does not change optical scattering or pathlength but does increase oxidised cytochrome c oxidase concentration in patients with brain injury,” Adv. Exp. Med. Biol. 765, 67–72 (2013).
[Crossref] [PubMed]

I. Tachtsidis, M. M. Tisdall, C. Pritchard, T. S. Leung, A. Ghosh, C. E. Elwell, and M. Smith, “Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study,” Adv. Exp. Med. Biol. 701, 9–14 (2011).
[Crossref] [PubMed]

Anaesthesia (1)

M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia 57(10), 999–1006 (2002).
[Crossref] [PubMed]

Anal. Biochem. (1)

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance comparison of several published tissue near-infrared spectroscopy algorithms,” Anal. Biochem. 227(1), 54–68 (1995).
[Crossref] [PubMed]

Appl. Opt. (3)

Biochem. J. (1)

C. E. Cooper, D. T. Delpy, and E. M. Nemoto, “The relationship of oxygen delivery to absolute haemoglobin oxygenation and mitochondrial cytochrome oxidase redox state in the adult brain: a near-infrared spectroscopy study,” Biochem. J. 332(Pt 3), 627–632 (1998).
[PubMed]

Biomed. Opt. Express (3)

J. Biomed. Opt. (9)

M. M. Tisdall, I. Tachtsidis, T. S. Leung, C. E. Elwell, and M. Smith, “Near-infrared spectroscopic quantification of changes in the concentration of oxidized cytochrome c oxidase in the healthy human brain during hypoxemia,” J. Biomed. Opt. 12(2), 024002 (2007).
[Crossref] [PubMed]

M. D. Papademetriou, I. Tachtsidis, M. J. Elliot, A. Hoskote, and C. E. Elwell, “Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. Opt. 17(6), 067008 (2012).
[Crossref] [PubMed]

S. Umeyama and T. Yamada, “New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization,” J. Biomed. Opt. 14(3), 034017 (2009).
[Crossref] [PubMed]

A. Mazhar, S. Dell, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Wavelength optimization for rapid chromophore mapping using spatial frequency domain imaging,” J. Biomed. Opt. 15(6), 061716 (2010).
[Crossref] [PubMed]

T. Correia, A. Gibson, and J. Hebden, “Identification of the optimal wavelengths for optical topography: a photon measurement density function analysis,” J. Biomed. Opt. 15(5), 056002 (2010).
[Crossref] [PubMed]

J. Lee, J. G. Kim, S. B. Mahon, D. Mukai, D. Yoon, G. R. Boss, S. E. Patterson, G. Rockwood, G. Isom, and M. Brenner, “Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy,” J. Biomed. Opt. 19(5), 055001 (2014).
[Crossref] [PubMed]

K. Uludag, M. Kohl, J. Steinbrink, H. Obrig, and A. Villringer, “Cross talk in the Lambert-Beer calculation for near-infrared wavelengths estimated by Monte Carlo simulations,” J. Biomed. Opt. 7(1), 51–59 (2002).
[Crossref] [PubMed]

N. Okui and E. Okada, “Wavelength dependence of crosstalk in dual-wavelength measurement of oxy- and deoxy-hemoglobin,” J. Biomed. Opt. 10(1), 011015 (2005).
[Crossref] [PubMed]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt, and D. T. Delpy, “Use of mitochondrial inhibitors to demonstrate that cytochrome oxidase near-infrared spectroscopy can measure mitochondrial dysfunction noninvasively in the brain,” J. Cereb. Blood Flow Metab. 19(1), 27–38 (1999).
[Crossref] [PubMed]

Neuroimage (5)

C. Kolyva, A. Ghosh, I. Tachtsidis, D. Highton, C. E. Cooper, M. Smith, and C. E. Elwell, “Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin,” Neuroimage 85(Pt 1), 234–244 (2014).
[Crossref] [PubMed]

A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady, N. J. Robertson, and X. Golay, “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1), 173–183 (2014).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact,” Neuroimage 22(1), 109–119 (2004).
[Crossref] [PubMed]

K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” Neuroimage 22(2), 583–589 (2004).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Philos. Trans. A. Math Phys. Eng. Sci. (3)

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4591–4604 (2011).
[Crossref] [PubMed]

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4452–4469 (2011).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. Math Phys. Eng. Sci. 369(1955), 4407–4424 (2011).
[PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669–676 (1997).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Physiol. Meas. (2)

I. Tachtsidis, M. Tisdall, T. S. Leung, C. E. Cooper, D. T. Delpy, M. Smith, and C. E. Elwell, “Investigation of in vivo measurement of cerebral cytochrome-c-oxidase redox changes using near-infrared spectroscopy in patients with orthostatic hypotension,” Physiol. Meas. 28(2), 199–211 (2007).
[Crossref] [PubMed]

J. Lee, J. Armstrong, K. Kreuter, B. J. Tromberg, and M. Brenner, “Non-invasive in vivo diffuse optical spectroscopy monitoring of cyanide poisoning in a rabbit model,” Physiol. Meas. 28(9), 1057–1066 (2007).
[Crossref] [PubMed]

PLoS ONE (1)

J. Y. Lo, J. Q. Brown, S. Dhar, B. Yu, G. M. Palmer, N. M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” PLoS ONE 8(4), e61767 (2013).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

S. Nioka and B. Chance, “NIR spectroscopic detection of breast cancer,” Technol. Cancer Res. Treat. 4(5), 497–512 (2005).
[Crossref] [PubMed]

Other (2)

M. Mitchell, An Introduction to Genetic Algorithms (Massachusetts Institute of Technology, 1996).

T. Madaan, “Computational investigation of optical spectroscopy algorithms to decouple optical measurements of brain oxygenation and metabolism,” M.S. Thesis, University College London (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the GA. Evolution over successive generations through the selection, crossover, and mutation operators leads to an optimal solution.
Fig. 2
Fig. 2 NIRS-based quantification of changes in cerebral chromophore concentrations. (a) Sample ∆A measurements at selected time points i, and (b) gold standard values of Δ[cj], where cj represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and oxCCO, respectively. Time points i are in minutes. For this representative dataset, i = t1 = 20 marks the beginning of HI and i = t2 = 66 marks the end of HI.
Fig. 3
Fig. 3 GA-derived optimal wavelength combinations for (a) k = 3, (b) k = 4, (c) k = 5, and (d) k = 8. The results are displayed separately for all 18 datasets.
Fig. 4
Fig. 4 Histograms of GA-derived optimal wavelength combinations for (a) k = 3, (b) k = 4, (c) k = 5, and (d) k = 8. The results of k-means clustering applied to GA-derived wavelengths are displayed as Gaussian curves overlaid on the histograms; these curves have been generated using the values reported in Table 1 and each has been normalized to the mean frequency of its respective cluster.
Fig. 5
Fig. 5 Overlay of the centroid wavelengths listed in Table 1 and the specific extinction coefficients εHbO2, εHHb, and εoxCCO−redCCO over the wavelength range of 780-900 nm.
Fig. 6
Fig. 6 Estimation errors for ∆[cj], where cj represents the jth chromophore with j = 1, 2, and 3 corresponding to (a) HbO2, (b) HHb, and (c) oxCCO, respectively. Time points i are in minutes. The dataset considered here is the same as the one shown in Fig. 2 and the errors for each k-wavelength combination listed in Table 1 are plotted only over the period of HI.
Fig. 7
Fig. 7 Wavelength dependence of NRMSE4 and time-averaged PAE4 for ∆[cj], where cj represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and oxCCO, respectively. Each of the four wavelengths listed in Table 1 is perturbed one at a time up to ± 4 nm and the resulting error metrics are plotted in (a)–(d). The means and standard errors shown are over all 18 datasets.
Fig. 8
Fig. 8 Wavelength dependence of NRMSE8 and time-averaged PAE8 for ∆[cj], where cj represents the jth chromophore with j = 1, 2, and 3 corresponding to HbO2, HHb, and oxCCO, respectively. Each of the eight wavelengths listed in Table 1 is perturbed one at a time up to ± 4 nm and the resulting error metrics are plotted in (a)–(h). The means and standard errors shown are over all 18 datasets.

Tables (2)

Tables Icon

Table 1 Results of k-means clustering applied to GA-derived wavelengths. Centroid positions are reported along with within-cluster standard deviations of point-to-centroid distances, all rounded to the nearest integer.

Tables Icon

Table 2 Error metrics computed for each k-wavelength combination listed in Table 1. The means and standard errors reported for NRMSEk and time-averaged PAEk are over all 18 datasets.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ ΔA( λ 1 ) ΔA( λ 2 ) . . . ΔA( λ n ) ]=[ β( λ 1 ) ε Hb O 2 ( λ 1 ) β( λ 1 ) ε HHb ( λ 1 ) β( λ 1 ) ε oxCCOredCCO ( λ 1 ) β( λ 2 ) ε Hb O 2 ( λ 2 ) β( λ 2 ) ε HHb ( λ 2 ) β( λ 2 ) ε oxCCOredCCO ( λ 2 ) . . . . . . . . . β( λ n ) ε Hb O 2 ( λ n ) β( λ n ) ε HHb ( λ n ) β( λ n ) ε oxCCOredCCO ( λ n ) ][ Δ[Hb O 2 ] Δ[HHb] Δ[oxCCO] ],
NRMS E k = i= t 1 t 2 j=1 3 ( Δ [ c j ] k (i)Δ [ c j ] n (i) ) 2 i= t 1 t 2 j=1 3 ( Δ [ c j ] n (i) ) 2 .

Metrics