Abstract

Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon deep-tissue spatially resolved mitochondrial imaging using membrane potential fluorescence fluctuations

Kayvan Forouhesh Tehrani, Emily G. Pendleton, William M. Southern, Jarrod A. Call, and Luke J. Mortensen
Biomed. Opt. Express 9(1) 254-259 (2018)

Molecular response of mitochondria to a short-duration femtosecond-laser stimulation

Yujie Zhu and Hao He
Biomed. Opt. Express 8(11) 4965-4973 (2017)

NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers

Haiyang Tang, Huilu Yao, Guiwen Wang, Yun Wang, Yong-qing Li, and Meifu Feng
Opt. Express 15(20) 12708-12716 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47(6), 545–556 (1957).
    [Crossref] [PubMed]
  2. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
    [Crossref] [PubMed]
  3. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
    [Crossref] [PubMed]
  4. X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
    [Crossref]
  5. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  6. Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
    [Crossref] [PubMed]
  7. C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
    [Crossref] [PubMed]
  8. W. J. Choi, I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18(22), 23285–23295 (2010).
    [Crossref] [PubMed]
  9. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
    [Crossref] [PubMed]
  10. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
    [Crossref] [PubMed]
  11. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  12. J. Bereiter-Hahn, “Intracellular motility of mitochondria: role of the inner compartment in migration and shape changes of mitochondria in XTH-cells,” J. Cell Sci. 30, 99–115 (1978).
    [PubMed]
  13. J. Bereiter-Hahn and M. Vöth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microsc. Res. Tech. 27(3), 198–219 (1994).
    [Crossref] [PubMed]
  14. T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).
  15. N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
    [Crossref] [PubMed]
  16. A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
    [Crossref]
  17. S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
    [Crossref] [PubMed]
  18. H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
    [Crossref]
  19. D. Morikawa, K. Kanematsu, T. Shibata, K. Haseda, N. Umeda, and Y. Ohta, “Detection of swelling of single isolated mitochondrion with optical microscopy,” Biomed. Opt. Express 5(3), 848–857 (2014).
    [PubMed]
  20. S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
    [Crossref] [PubMed]
  21. T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
    [Crossref] [PubMed]
  22. Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
    [Crossref] [PubMed]
  23. Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
    [Crossref] [PubMed]
  24. R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
    [Crossref] [PubMed]
  25. Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
    [Crossref]
  26. Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
    [Crossref]
  27. J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

2012 (3)

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

2011 (1)

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

2010 (1)

2008 (2)

T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, “Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,” Opt. Express 16(16), 12227–12238 (2008).
[Crossref] [PubMed]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

2007 (2)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

2006 (2)

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

2005 (4)

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

2004 (1)

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

2002 (1)

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

2000 (1)

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

1996 (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

1994 (1)

J. Bereiter-Hahn and M. Vöth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microsc. Res. Tech. 27(3), 198–219 (1994).
[Crossref] [PubMed]

1991 (1)

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

1990 (1)

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
[Crossref] [PubMed]

1979 (1)

J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
[Crossref] [PubMed]

1978 (1)

J. Bereiter-Hahn, “Intracellular motility of mitochondria: role of the inner compartment in migration and shape changes of mitochondria in XTH-cells,” J. Cell Sci. 30, 99–115 (1978).
[PubMed]

1957 (1)

Aggarwal, K.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Ahmad, T.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Ahn, S. G.

Allman, B. E.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Arendt, J. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Ayi, T. C.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Backman, V.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Barer, R.

Bellair, C. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Bereiter-Hahn, J.

J. Bereiter-Hahn and M. Vöth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microsc. Res. Tech. 27(3), 198–219 (1994).
[Crossref] [PubMed]

J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
[Crossref] [PubMed]

J. Bereiter-Hahn, “Intracellular motility of mitochondria: role of the inner compartment in migration and shape changes of mitochondria in XTH-cells,” J. Cell Sci. 30, 99–115 (1978).
[PubMed]

Cameron, J.

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Chen, A.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Chen, L. B.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Choi, W.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Choi, W. J.

Chue, B.

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Crawford, J. M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Cuche, E.

Curl, C. L.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Delbridge, L. M.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Depeursinge, C.

Diez-Silva, M.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Emery, Y.

Fang, J.

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Feld, M. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Fitzmaurice, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Fox, C. H.

J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
[Crossref] [PubMed]

Gurjar, R.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Harris, P. J.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Harris, T.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Haseda, K.

Hattori, T.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Hide, M.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Higuchi, Y.

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

Hiragun, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Hultman, E.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
[Crossref] [PubMed]

Ikeda, T.

Ishii, K.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Ishiwata, H.

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Itoh, M.

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Itzkan, I.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Iwai, H.

Iwami, K.

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Jeon, I.

Kabani, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Kajimoto, T.

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

Kanazashi, Y.

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Kanematsu, K.

Kawaguchi, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Kim, S.

Kline, E.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Kumar, M.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Kunz, H.

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Lee, B. H.

Levin, H. S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Li, Y.

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Liang, X. J.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Lim, C. S.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Lin, M.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Liu, A. Q.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Lowder, T. W.

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

Lundin, A.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
[Crossref] [PubMed]

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Mabalirajan, U.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Magistretti, P. J.

Marquet, P.

McGillican, T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

McGilligan, J. A.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Micheal, A.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Miller, J. H.

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Mitaku, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

Miura, T.

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

Miwa, M.

Morikawa, D.

D. Morikawa, K. Kanematsu, T. Shibata, K. Haseda, N. Umeda, and Y. Ohta, “Detection of swelling of single isolated mitochondrion with optical microscopy,” Biomed. Opt. Express 5(3), 848–857 (2014).
[PubMed]

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

Mottola-Hartshorn, C.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Mukherjee, S.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Müller, M. G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Nakayama, S.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

Nugent, K. A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Ohta, Y.

D. Morikawa, K. Kanematsu, T. Shibata, K. Haseda, N. Umeda, and Y. Ohta, “Detection of swelling of single isolated mitochondrion with optical microscopy,” Biomed. Opt. Express 5(3), 848–857 (2014).
[PubMed]

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

Onojima, T.

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Palanisami, A.

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Park, Y. K.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Pattnaik, B.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Perelman, L. T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Pham, N. A.

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Popescu, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Live cell refractometry using microfluidic devices,” Opt. Lett. 31(18), 2759–2761 (2006).
[Crossref] [PubMed]

Rappaz, B.

Reers, M.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Richardson, T.

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Roberts, A.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Robinson, B. H.

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Sakuyama, T.

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

Seiler, M.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Sethi, T.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Shapshay, S.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Shibata, T.

Shinohara, R.

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Smiley, S. T.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Smith, T. W.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Steele, G. D.

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Stewart, A. G.

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

Suresh, S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Thorell, B.

J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
[Crossref] [PubMed]

Tiwari, B. K.

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Uechi, Y.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Umeda, N.

D. Morikawa, K. Kanematsu, T. Shibata, K. Haseda, N. Umeda, and Y. Ohta, “Detection of swelling of single isolated mitochondrion with optical microscopy,” Biomed. Opt. Express 5(3), 848–857 (2014).
[PubMed]

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Valdez, T.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Van Dam, J.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Vöth, M.

J. Bereiter-Hahn and M. Vöth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microsc. Res. Tech. 27(3), 198–219 (1994).
[Crossref] [PubMed]

Wallace, M. B.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Watanabe, K.

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Wibom, R.

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
[Crossref] [PubMed]

Yamashita, Y.

Yamauchi, T.

Yanase, T.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Yanase, Y.

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Yap, P. H.

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Yatagai, T.

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Yoon, J. H.

Yoshioka, H.

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Zhang, Q.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Zonios, G.

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Anal. Methods (1)

A. Palanisami, J. Fang, T. W. Lowder, H. Kunz, and J. H. Miller., “Rapid morphological characterization of isolated mitochondria using Brownian motion,” Anal. Methods 4(2), 513–521 (2012).
[Crossref]

Biochem. Biophys. Res. Commun. (2)

S. Nakayama, T. Sakuyama, S. Mitaku, and Y. Ohta, “Fluorescence imaging of metabolic responses in single mitochondria,” Biochem. Biophys. Res. Commun. 290(1), 23–28 (2002).
[Crossref] [PubMed]

Y. Uechi, H. Yoshioka, D. Morikawa, and Y. Ohta, “Stability of membrane potential in heart mitochondria: Single mitochondrion imaging,” Biochem. Biophys. Res. Commun. 344(4), 1094–1101 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

T. Hattori, K. Watanabe, Y. Uechi, H. Yoshioka, and Y. Ohta, “Repetitive transient depolarizations of the inner mitochondrial membrane induced by proton pumping,” Biophys. J. 88(3), 2340–2349 (2005).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

Y. Yanase, T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide, “Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging,” Biosens. Bioelectron. 32(1), 62–68 (2012).
[Crossref] [PubMed]

Cell Death Dis. (1)

T. Ahmad, K. Aggarwal, B. Pattnaik, S. Mukherjee, T. Sethi, B. K. Tiwari, M. Kumar, A. Micheal, and U. Mabalirajan, “Computational classification of mitochondrial shapes reflects stress and redox state,” Cell Death Dis. 4, e461 (2013).

Cytometry A (1)

C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. Delbridge, “Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy,” Cytometry A 65(1), 88–92 (2005).
[Crossref] [PubMed]

FEBS Lett. (1)

Y. Higuchi, T. Miura, T. Kajimoto, and Y. Ohta, “Effects of disialoganglioside GD3 on the mitochondrial membrane potential,” FEBS Lett. 579(14), 3009–3013 (2005).
[Crossref] [PubMed]

J. Cell Biol. (1)

J. Bereiter-Hahn, C. H. Fox, and B. Thorell, “Quantitative reflection contrast microscopy of living cells,” J. Cell Biol. 82(3), 767–779 (1979).
[Crossref] [PubMed]

J. Cell Sci. (1)

J. Bereiter-Hahn, “Intracellular motility of mitochondria: role of the inner compartment in migration and shape changes of mitochondria in XTH-cells,” J. Cell Sci. 30, 99–115 (1978).
[PubMed]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

Y. Kanazashi, Y. Li, T. Onojima, K. Iwami, Y. Ohta, and N. Umeda, “pH Measurement using dual-wavelength fluorescent ratio by two-photon excitation for mitochondrial activity,” Jpn. J. Appl. Phys. 51(11R), 117001 (2012).
[Crossref]

Microsc. Microanal. (1)

N. A. Pham, T. Richardson, J. Cameron, B. Chue, and B. H. Robinson, “Altered mitochondrial structure and motion dynamics in living cells with energy metabolism defects revealed by real time microscope imaging,” Microsc. Microanal. 10(2), 247–260 (2004).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

J. Bereiter-Hahn and M. Vöth, “Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria,” Microsc. Res. Tech. 27(3), 198–219 (1994).
[Crossref] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4(9), 717–719 (2007).
[Crossref] [PubMed]

Nature (1)

V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, and T. McGillican, “Detection of preinvasive cancer cells,” Nature 406(6791), 35–36 (2000).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

S. T. Smiley, M. Reers, C. Mottola-Hartshorn, M. Lin, A. Chen, T. W. Smith, G. D. Steele, and L. B. Chen, “Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1,” Proc. Natl. Acad. Sci. U.S.A. 88(9), 3671–3675 (1991).
[Crossref] [PubMed]

Proc. SPIE (1)

H. Ishiwata, M. Itoh, and T. Yatagai, “Retardation modulated differential interference microscope and its application to 3-D shape measurement,” Proc. SPIE 2873, 21–24 (1996).
[Crossref]

Scand. J. Clin. Lab. Invest. (1)

R. Wibom, A. Lundin, and E. Hultman, “A sensitive method for measuring ATP-formation in rat muscle mitochondria,” Scand. J. Clin. Lab. Invest. 50(2), 143–152 (1990).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

Y. Li, R. Shinohara, K. Iwami, Y. Ohta, and N. Umeda, “Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry,” Sci. China Phys. Mech. Astron. 54(12), 2225–2229 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

X. J. Liang, A. Q. Liu, C. S. Lim, T. C. Ayi, and P. H. Yap, “Determining refractive index of single living cell using an integrated microchip,” Sens. Actuators A Phys. 133(2), 349–354 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Block diagram of the RM-DIC microscope. By changing the direction of the rotary polarizer, the phase difference between two beams split by Nomarski prism (beam a and beam b) can be modulated. The distance between beam a’ and beam b’ is the shear amount.
Fig. 2
Fig. 2 (A) A fused silica glass plate with grooves. T and B indicate the top and bottom region of the plate, respectively. (B) Transmitted light image of the plate. (C) DIC image of the plate when the rotary polarizer angle was 40°. T and B correspond to the T and B shown in (A). (D) Intensity changes upon rotation of the polarizer. The indicators show the light intensities at the corresponding positions in (C). (E) ΔOPL map of the plate. The ΔOPLs on the red dotted line were set to 0 nm. (F) Changes in ΔOPLs along the shear direction. ΔOPL at P1 is set to 0 nm. P1 and P2 are the points shown in (C).
Fig. 3
Fig. 3 Measurements of a silica bead with a diameter of 1μm. (A) DIC image of a silica bead in water when the direction of the rotary polarizer was 150°. (B) The changes in light intensity upon rotating the rotary polarizer. Circles, triangles and squares indicate the intensity at the corresponding regions shown in (A). The solid lines are the curves obtained by fitting Eq. (1) to the data. (C) ΔOPL map of a bead. (D) Changes in ΔOPL along a line through the center of the bead image (open circle). The solid line shows the interpolation curve. (E) Transmitted light image of a bead. (F) Changes in the intensity of the transmitted light along a line through the center of the bead image (open circle). The solid line shows the approximated curve obtained by fitting the Gaussian function to the data.
Fig. 4
Fig. 4 The relationship between RI difference (Δn) and Max.ΔOPL observed for the silica and polystyrene bead. Δn is the difference in RI between the beads and the surrounding medium (See the text for exact definition). Red squares and blue circles show the measured Max.ΔOPLs for silica beads when the RI was assumed to be 1.43 and for polystyrene beads with the RI of 1.59, respectively. Curves a and b (red and blue solid curves) show the approximated curves obtained by fitting Eq. (3) to the data using the least-squares method. Curves c and d (red broken curves) show the approximated curves for silica beads when the RI was assumed to be 1.42 and 1.44, respectively.
Fig. 5
Fig. 5 Measurements of a single isolated mitochondrion. (A) DIC image of a mitochondrion in the isotonic buffer when the direction of the rotary polarizer was 40°. (B) The changes in the light intensity upon rotating the rotary polarizer. Circles, triangles, and squares indicate the intensity at the corresponding regions shown in (A). The solid lines are curves obtained by fitting Eq. (1) to the data. (C) ΔOPL map of a mitochondrion. (D) Changes in the ΔOPL along a line through the center of the mitochondrion image (open circle). The solid line is the interpolation curve. (E) A transmitted light image of a mitochondrion. (F) The changes in the intensity of the transmitted light along a line through the center of the mitochondrion image (open circle). The solid line is the approximated curve obtained by fitting the Gaussian function to the data.
Fig. 6
Fig. 6 Electron microscopic images of isolated mitochondria. Mitochondria were stained with meglumine gadoterate and lead citrate. The images were taken using a transmission electron microscope as described in section 2.5.
Fig. 7
Fig. 7 The correlation between Max.ΔOPL and TMRE fluorescence of mitochondria. (A) TMRE fluorescence image of a mitochondrion. (B) Changes in RFIs along a line through the center of the mitochondrion image. (C-E) Isolated mitochondria with half width of 680-800 nm were analyzed (N = 22), rs is the Spearman's rank correlation coefficient. (C) The correlation diagram between Max.RFI and half width of isolated mitochondria. (D) The correlation diagram between Max.ΔOPL and half width. (E) The correlation diagram between RI and Max.RFI of isolated mitochondria The RI was calculated with Eq. (3) by assuming the RI of silica beads was 1.43.

Tables (1)

Tables Icon

Table 1 RIs of mitochondria with different ranges of the half widths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ij(x) = Aj sin(2+ Φ 0 +ΔΦj)+Bj
ΔOPL = ΔΨ / 2π × 546 nm
Max.ΔOPL (nm) = C Δn 2 + DΔn

Metrics