Abstract

We report a novel reagent- and separation-free method for urine creatinine concentration measurement using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates, a label-free, multiplexed molecular sensing and imaging technique recently developed by us. The performance of this new technology is evaluated by the detection and quantification of creatinine spiked in three different liquids: creatinine in water, mixture of creatinine and urea in water, and creatinine in artificial urine within physiologically relevant concentration ranges. Moreover, the potential application of our method is demonstrated by creatinine concentration measurements in urine samples collected from a mouse model of nephritis. The limit of detection of creatinine was 13.2 nM (0.15 µg/dl) and 0.68 mg/dl in water and urine, respectively. Our method would provide an alternative tool for rapid, cost-effective, and reliable urine analysis for non-invasive diagnosis and monitoring of renal function.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of surface-enhanced Raman scattering as a prognostic indicator of acute kidney transplant rejection

Jingmao Chi, Thet Zaw, Iliana Cardona, Mujtaba Hosnain, Neha Garg, Heather R. Lefkowitz, Peter Tolias, and Henry Du
Biomed. Opt. Express 6(3) 761-769 (2015)

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N.A. Brunzel, Fundamentals of Urine and Body Fluid Analysis. 1994.
  2. H. M. Heise, G. Voigt, P. Lampen, L. Küpper, S. Rudloff, and G. Werner, “Multivariate Calibration for the Determination of Analytes in Urine Using Mid-Infrared Attenuated Total Reflection Spectroscopy,” Appl. Spectrosc. 55(4), 434–443 (2001).
    [Crossref]
  3. W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med. 28(4), 330–334 (2001).
    [Crossref] [PubMed]
  4. M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
    [PubMed]
  5. B. Lindbäck and A. Bergman, “A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry,” Clin. Chem. 35(5), 835–837 (1989).
    [PubMed]
  6. E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
    [Crossref] [PubMed]
  7. Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
    [Crossref] [PubMed]
  8. R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
    [Crossref]
  9. E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
    [Crossref] [PubMed]
  10. D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
    [Crossref] [PubMed]
  11. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
    [Crossref]
  12. W. C. Shih, K. L. Bechtel, and M. S. Feld, Handbook Of Optical Sensing Of Glucose In Biological Fluids And Tissues, ed. V.V. Tuchin. 2008: CRC Press.
  13. H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
    [Crossref] [PubMed]
  14. K. L. Bechtel, W. C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications,” Opt. Express 16(17), 12737–12745 (2008).
    [Crossref] [PubMed]
  15. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
    [Crossref] [PubMed]
  16. W.-C. Shih, K. Bechtel, and M. Feld, In Vivo Glucose Measurements. Chemical Analysis, ed. D. Cunningham and J. Stenken. Vol. 174. 2009: John Wiley & Sons, Inc.
  17. J. Qi and W.-C. Shih, “Parallel Raman Microspectroscopy using Programmable Multi-point Illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
    [Crossref] [PubMed]
  18. J. Qi, J. Li, and W.-C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
    [Crossref] [PubMed]
  19. C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
    [Crossref]
  20. N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
    [Crossref]
  21. J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
    [Crossref] [PubMed]
  22. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  23. C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
    [Crossref]
  24. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
    [Crossref] [PubMed]
  25. M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
    [Crossref] [PubMed]
  26. J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
    [Crossref] [PubMed]
  27. H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
    [Crossref] [PubMed]
  28. X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
    [Crossref] [PubMed]
  29. T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
    [Crossref]
  30. Y. Wang, J. Chen, Y. Wu, Y. Chen, J. Pan, J. Lei, Y. Chen, L. Sun, S. Feng, and R. Chen, Surface-enhanced Raman spectroscopy of creatinine in silver colloid. in Photonics and Optoelectronics Meetings 2011. 2012. International Society for Optics and Photonics.
  31. R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
    [Crossref] [PubMed]
  32. K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
    [Crossref] [PubMed]
  33. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132(0), 321–328 (2006).
    [Crossref] [PubMed]
  34. J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
    [Crossref]
  35. F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
    [Crossref] [PubMed]
  36. M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
    [Crossref] [PubMed]
  37. G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
    [Crossref] [PubMed]
  38. M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
    [Crossref] [PubMed]
  39. J. Qi and W. C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53(13), 2881–2885 (2014).
    [Crossref] [PubMed]
  40. W.-C. Shih, K. Bechtel, and M. S. Feld, “Noninvasive glucose sensing with Raman spectroscopy,” Analytical chemistry of in vivo glucose measurements. Hoboken, NJ: John Wiley & Sons, 391–419 (2009).
  41. J. Qi, K. L. Bechtel, and W.-C. Shih, “Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy,” Biomedical Spectroscopy and Imaging 3(4), 359–368 (2014).
  42. K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
    [Crossref]
  43. C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
    [Crossref] [PubMed]
  44. T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
    [Crossref] [PubMed]

2014 (12)

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

J. Qi, K. L. Bechtel, and W.-C. Shih, “Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy,” Biomedical Spectroscopy and Imaging 3(4), 359–368 (2014).

J. Qi and W. C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53(13), 2881–2885 (2014).
[Crossref] [PubMed]

2013 (2)

J. Qi, J. Li, and W.-C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

2012 (4)

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

J. Qi and W.-C. Shih, “Parallel Raman Microspectroscopy using Programmable Multi-point Illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
[Crossref] [PubMed]

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

2010 (3)

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

2009 (1)

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

2008 (5)

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: Theory and simulations,” Opt. Express 16(17), 12726–12736 (2008).
[Crossref] [PubMed]

K. L. Bechtel, W. C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: Experimental applications,” Opt. Express 16(17), 12737–12745 (2008).
[Crossref] [PubMed]

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

2006 (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132(0), 321–328 (2006).
[Crossref] [PubMed]

2005 (3)

C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

2004 (1)

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

2001 (2)

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1996 (1)

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

1991 (1)

R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
[Crossref]

1989 (1)

B. Lindbäck and A. Bergman, “A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry,” Clin. Chem. 35(5), 835–837 (1989).
[PubMed]

1987 (1)

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

Ahmad, I. B.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Ahn, C.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Arnob, M. M. P.

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Bader, M.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Bai, F.

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

Bechtel, K. L.

Bergman, A.

B. Lindbäck and A. Bergman, “A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry,” Clin. Chem. 35(5), 835–837 (1989).
[PubMed]

Bertaso, A.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Bonizzato, L.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Brekken, D.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Brennan, C.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Brunzel, N.A.

N.A. Brunzel, Fundamentals of Urine and Body Fluid Analysis. 1994.

Bylander, J.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chakravarty, S.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Chen, R. T.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Chiang, H. K.

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

Choi, C. J.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Clarke, R. H.

W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med. 28(4), 330–334 (2001).
[Crossref] [PubMed]

Cunningham, B. T.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Deljavan, N.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Demirel, M. C.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

Doi, S.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Dou, X.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Duyne, R. P. V.

C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

Elin, R. J.

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

Fan, D. L.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Feld, M. S.

Fischer, W.

R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
[Crossref]

Fu, Y.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Gee, S. J.

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

Gheewala, M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Gottardo, R.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Güttler, B.

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

Gutzki, F. M.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Hammock, B. D.

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

Hasan, D.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Hauck, H. E.

R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

Heise, H. M.

Henrion, A.

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kho, K. W.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Klaus, R.

R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
[Crossref]

Koytek, S.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

Kroll, M. H.

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

Küpper, L.

Lampen, P.

Larin, K.

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Lazar, A.

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Lee, T. R.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Lev, D.

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Li, C.-H.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Li, J.

Li, M.

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

Li, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Lim, S. S.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Lin, S. H.

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

Lindbäck, B.

B. Lindbäck and A. Bergman, “A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry,” Clin. Chem. 35(5), 835–837 (1989).
[PubMed]

Liotta, E.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Liu, C.-H.

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

Lu, H.-H.

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

Lu, J.

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

Malvadkar, N.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

Mhaisalkar, S.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Mishra, S.

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

Mitschke, A.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Mohan, C.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

Motwani, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132(0), 321–328 (2006).
[Crossref] [PubMed]

Olivo, M.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Ozaki, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Park, E. K.

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

Parvez Arnob, M. M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Pascali, J. P.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Paterson, A.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Peng, F.-Y.

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

Poe, B.

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

Pollock, R.

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Premasiri, W. R.

W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med. 28(4), 330–334 (2001).
[Crossref] [PubMed]

Putterman, C.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Qi, J.

J. Qi, K. L. Bechtel, and W.-C. Shih, “Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy,” Biomedical Spectroscopy and Imaging 3(4), 359–368 (2014).

J. Qi and W. C. Shih, “Performance of line-scan Raman microscopy for high-throughput chemical imaging of cell population,” Appl. Opt. 53(13), 2881–2885 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

J. Qi, J. Li, and W.-C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

J. Qi and W.-C. Shih, “Parallel Raman Microspectroscopy using Programmable Multi-point Illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
[Crossref] [PubMed]

Qing, K. Z. M.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Raja, B.

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Reeves, W. B.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

Roach, N. A.

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

Rudloff, S.

Ruelos, V. C.

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Sachdeva, A.

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Santos, G. M.

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Schenker, M. B.

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

Schiel, D.

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

Sharma, R.

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

Shen, Z. X.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Shih, W. C.

Shih, W.-C.

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

J. Qi, K. L. Bechtel, and W.-C. Shih, “Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy,” Biomedical Spectroscopy and Imaging 3(4), 359–368 (2014).

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

J. Qi, J. Li, and W.-C. Shih, “High-speed hyperspectral Raman imaging for label-free compositional microanalysis,” Biomed. Opt. Express 4(11), 2376–2382 (2013).
[Crossref] [PubMed]

J. Qi and W.-C. Shih, “Parallel Raman Microspectroscopy using Programmable Multi-point Illumination,” Opt. Lett. 37(8), 1289–1291 (2012).
[Crossref] [PubMed]

Singh, R. K.

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

Soo, K. C.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Srivastava, S. K.

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

Stosch, R.

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

Strych, U.

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Sudheendran, N.

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Sun, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Tagliaro, F.

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Tsikas, D.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Vanarsa, K.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Vikram, K.

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

Voigt, G.

Wang, A. X.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Wang, C.

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Wang, H.

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

Wang, L.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Wang, S.

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

Wang, T.-L.

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

Watanabe, T.

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

Watt, F.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Werner, G.

White, T. J.

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

Will, W.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Willson, R. C.

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Wolf, A.

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

Wolfe, J. C.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Womble, M. E.

W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med. 28(4), 330–334 (2001).
[Crossref] [PubMed]

Wu, C.

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

Wu, H. Y.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Wu, T.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Xie, C.

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

Xu, X.

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Yamaguchi, Y.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Yamamoto, H.

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Yan, M.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

Yao, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Young, E.

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Yu, J. C.

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

Yu, J. C.-C.

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

Zeng, J.

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Zhao, F.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Zhou, J.

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Zhou, X. J.

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

Zuo, Y.

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Anal. Chem. (2)

C. L. Haynes, A. D. McFarland, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 77(17), 338A–346A (2005).
[Crossref]

R. Stosch, A. Henrion, D. Schiel, and B. Güttler, “Surface-Enhanced Raman Scattering Based Approach for Quantitative Determination of Creatinine in Human Serum,” Anal. Chem. 77(22), 7386–7392 (2005).
[Crossref] [PubMed]

Anal. Sci. (1)

Y. Zuo, C. Wang, J. Zhou, A. Sachdeva, and V. C. Ruelos, “Simultaneous Determination of Creatinine and Uric Acid in Human Urine by High-Performance Liquid Chromatography,” Anal. Sci. 24(12), 1589–1592 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (1)

J. Zeng, J. Qi, F. Bai, J. C. Yu, and W.-C. Shih, “Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot residues,” Analyst (Lond.) 139(17), 4270–4278 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Xu, D. Hasan, L. Wang, S. Chakravarty, R. T. Chen, D. L. Fan, and A. X. Wang, “Guided-mode-resonance-coupled plasmonic-active SiO2 nanotubes for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 100(19), 191114 (2012).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biomedical Spectroscopy and Imaging (1)

J. Qi, K. L. Bechtel, and W.-C. Shih, “Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy,” Biomedical Spectroscopy and Imaging 3(4), 359–368 (2014).

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chromatographia (1)

R. Klaus, W. Fischer, and H. E. Hauck, “Qualitative and quantitative analysis of uric acid, creatine and creatinine together with carbohydrates in biological material by HPTLC,” Chromatographia 32(7–8), 307–316 (1991).
[Crossref]

Clin. Chem. (2)

M. H. Kroll, N. A. Roach, B. Poe, and R. J. Elin, “Mechanism of interference with the Jaffé reaction for creatinine,” Clin. Chem. 33(7), 1129–1132 (1987).
[PubMed]

B. Lindbäck and A. Bergman, “A new commercial method for the enzymatic determination of creatinine in serum and urine evaluated: Comparison with a kinetic Jaffé method and isotope dilution-mass spectrometry,” Clin. Chem. 35(5), 835–837 (1989).
[PubMed]

Clin. Chim. Acta (1)

E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, “Rapid and direct determination of creatinine in urine using capillary zone electrophoresis,” Clin. Chim. Acta 409(1-2), 52–55 (2009).
[Crossref] [PubMed]

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132(0), 321–328 (2006).
[Crossref] [PubMed]

J. Agric. Food Chem. (1)

E. K. Park, T. Watanabe, S. J. Gee, M. B. Schenker, and B. D. Hammock, “Creatinine measurements in 24 h urine by liquid chromatography--tandem mass spectrometry,” J. Agric. Food Chem. 56(2), 333–336 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

H. Wang, N. Malvadkar, S. Koytek, J. Bylander, W. B. Reeves, and M. C. Demirel, “Quantitative analysis of creatinine in urine by metalized nanostructured parylene,” J. Biomed. Opt. 15(2), 027004 (2010).
[Crossref] [PubMed]

K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt. 13(5), 054026 (2008).
[Crossref] [PubMed]

M. Li, F. Zhao, J. Zeng, J. Qi, J. Lu, and W.-C. Shih, “Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection,” J. Biomed. Opt. 19(11), 111611 (2014).
[Crossref] [PubMed]

M. Li, J. Lu, J. Qi, F. Zhao, J. Zeng, J. C.-C. Yu, and W.-C. Shih, “Stamping surface-enhanced Raman spectroscopy for label-free, multiplexed, molecular sensing and imaging,” J. Biomed. Opt. 19(5), 050501 (2014).
[Crossref] [PubMed]

J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (1)

D. Tsikas, A. Wolf, A. Mitschke, F. M. Gutzki, W. Will, and M. Bader, “GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: Inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2582–2592 (2010).
[Crossref] [PubMed]

J. Immunol. (2)

C. Xie, R. Sharma, H. Wang, X. J. Zhou, and C. Mohan, “Strain Distribution Pattern of Susceptibility to Immune-Mediated Nephritis,” J. Immunol. 172(8), 5047–5055 (2004).
[Crossref] [PubMed]

T. Wu, Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan, “Urine Proteome Scans Uncover Total Urinary Protease, Prostaglandin D Synthase, Serum Amyloid P, and Superoxide Dismutase as Potential Markers of Lupus Nephritis,” J. Immunol. 184(4), 2183–2193 (2010).
[Crossref] [PubMed]

J. Innovative Opt. Health Sci. (1)

C.-H. Liu, J. Qi, J. Lu, S. Wang, C. Wu, W.-C. Shih, and K. Larin, “Improvement of tissue analysis and classification using optical coherence tomography combined with Raman spectroscopy,” J. Innovative Opt. Health Sci. 8(2), 1550006 (2014).
[Crossref]

J. Mol. Struct. (1)

K. Vikram, S. Mishra, S. K. Srivastava, and R. K. Singh, “Low temperature Raman and DFT study of creatinine,” J. Mol. Struct. 1012(0), 141–150 (2012).
[Crossref]

Laser Phys. Lett. (1)

N. Sudheendran, J. Qi, E. Young, A. Lazar, D. Lev, R. Pollock, K. Larin, and W.-C. Shih, “Line-scan Raman microscopy complements optical coherence tomography for tumor boundary detection,” Laser Phys. Lett. 11(10), 105602 (2014).
[Crossref]

Lasers Surg. Med. (1)

W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med. 28(4), 330–334 (2001).
[Crossref] [PubMed]

Nanoscale (5)

J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. Raja, U. Strych, R. C. Willson, and W.-C. Shih, “Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics,” Nanoscale 6(15), 8521–8526 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

T.-L. Wang, H. K. Chiang, H.-H. Lu, and F.-Y. Peng, “Semi-quantitative surface enhanced Raman scattering spectroscopic creatinine measurement in human urine samples,” Opt. Quantum Electron. 37(13–15), 1415–1422 (2005).
[Crossref]

RSC Advances (1)

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Small (1)

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small 8(18), 2878–2885 (2012).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, and Y. Ozaki, “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vib. Spectrosc. 13(1), 83–89 (1996).
[Crossref]

Other (5)

W. C. Shih, K. L. Bechtel, and M. S. Feld, Handbook Of Optical Sensing Of Glucose In Biological Fluids And Tissues, ed. V.V. Tuchin. 2008: CRC Press.

N.A. Brunzel, Fundamentals of Urine and Body Fluid Analysis. 1994.

W.-C. Shih, K. Bechtel, and M. Feld, In Vivo Glucose Measurements. Chemical Analysis, ed. D. Cunningham and J. Stenken. Vol. 174. 2009: John Wiley & Sons, Inc.

Y. Wang, J. Chen, Y. Wu, Y. Chen, J. Pan, J. Lei, Y. Chen, L. Sun, S. Feng, and R. Chen, Surface-enhanced Raman spectroscopy of creatinine in silver colloid. in Photonics and Optoelectronics Meetings 2011. 2012. International Society for Optics and Photonics.

W.-C. Shih, K. Bechtel, and M. S. Feld, “Noninvasive glucose sensing with Raman spectroscopy,” Analytical chemistry of in vivo glucose measurements. Hoboken, NJ: John Wiley & Sons, 391–419 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

S-SERS configuration and NPGD substrate: (a) Photograph of the sandwich scheme used in the experiment for creatinine detection. (b) Schematic of NPGD based SERS substrate. SEM images of NPGD arrays at the magnification of 100,000 X (c) and 250,000 X (d). The scale bars in SEM images are 200 nm.

Fig. 2
Fig. 2

Reproducibility of S-SERS: (a) SERS spectra of 100 μM creatinine detected by S-SERS at ten different locations, and (b) relative intensity variations of major peaks for the ten locations.

Fig. 3
Fig. 3

Concentration-dependent SERS spectra of creatinine measured by S-SERS: The concentration ranges from 100 nM to 100 μM. The bottom trace was acquired from 10 μM creatinine before stamping (normal). The insets indicate the variations of creatinine peak intensity at 836 cm−1 as a function of creatinine concentration, and the molecular structure of creatinine. The error bars represent the standard deviation from five measurements.

Fig. 4
Fig. 4

SERS spectra from creatinine and urea water mixture: (a) Concentration-dependent SERS spectra of 100 μM creatinine and 100 mM urea mixed at different volume ratios. (b) A zoomed-in view of the dashed window in (a), showing the intensity variation of creatinine. (c) A spectra of urea in water.

Fig. 5
Fig. 5

Concentration-dependent SERS spectra of creatinine in artificial urine spiked with creatinine at concentrations of 10, 25, 50 and 200 μM. The inset shows creatinine peak intensity at 836 cm−1 versus concentration.

Fig. 6
Fig. 6

Performance of S-SERS on urine from diseased mouse models: (a) Concentration-dependent SERS spectra of creatinine in urine samples collected from a nephritic mouse model of anti-GBM disease. (b)The variations of creatinine peak intensity at 836 cm−1 versus creatinine concentration exhibited good linearity.

Metrics