Abstract

The translation of photodynamic therapy (PDT) to the clinic has mostly been limited to superficial diseases where traditional light delivery is noninvasive. To overcome this limitation, a variety of mechanisms have been suggested to noninvasively deliver light to deep tissues. This work explores the minimum amount of light required by these methods to produce a meaningful PDT effect in the in vitro setting under representative low fluence and wavelength conditions. This threshold was found to be around 192 mJ/cm2 using the clinically approved photosensitizer aminolevulinic acid and 12 mJ/cm2 for the more efficient, second generation photosensitizer TPPS2a.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
NADH fluorescence as a photobiological metric in 5-aminolevlinic acid (ALA)-photodynamic therapy

Guan-Chin Su, Yau-Huei Wei, and Hsing-Wen Wang
Opt. Express 19(22) 21145-21154 (2011)

Clinical system for interstitial photodynamic therapy with combined on-line dosimetry measurements

Marcelo Soto Thompson, Ann Johansson, Thomas Johansson, Stefan Andersson-Engels, Sune Svanberg, Niels Bendsoe, and Katarina Svanberg
Appl. Opt. 44(19) 4023-4031 (2005)

Measurements of the optical properties of tissue in conjunction with photodynamic therapy

Annika M. K. Nilsson, Roger Berg, and Stefan Andersson-Engels
Appl. Opt. 34(21) 4609-4619 (1995)

References

  • View by:
  • |
  • |
  • |

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
    [Crossref] [PubMed]
  2. P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
    [Crossref] [PubMed]
  3. S. Michels and U. Schmidt-Erfurth, “Photodynamic therapy with verteporfin: a new treatment in ophthalmology,” Semin. Ophthalmol. 16(4), 201–206 (2001).
    [Crossref] [PubMed]
  4. J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
    [PubMed]
  5. L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
    [Crossref] [PubMed]
  6. P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
    [Crossref] [PubMed]
  7. Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
    [Crossref] [PubMed]
  8. Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
    [Crossref]
  9. M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
    [Crossref] [PubMed]
  10. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
    [Crossref] [PubMed]
  11. B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
    [Crossref] [PubMed]
  12. S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
    [Crossref] [PubMed]
  13. W. Chen and J. Zhang, “Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment,” J. Nanosci. Nanotechnol. 6(4), 1159–1166 (2006).
    [Crossref] [PubMed]
  14. X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
    [Crossref] [PubMed]
  15. M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
    [Crossref] [PubMed]
  16. N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
    [Crossref] [PubMed]
  17. R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
    [Crossref] [PubMed]
  18. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
    [Crossref] [PubMed]
  19. J. Gonzales, G. Zamora, A. Trinidad, L. Marcu, S. Cherry, and H. Hirschberg, “Ultra low fluence rate photodynamic therapy: Simulation of light emitted by the Cerenkov effect,” in (SPIE Proceedings, 2014), 89280F.
  20. T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
    [PubMed]
  21. S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
    [Crossref] [PubMed]
  22. SciDAVis, retrieved December 2014, http://scidavis.sourceforge.net/ .
  23. B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
    [Crossref] [PubMed]
  24. T. Takahashi and T. Ogura, “Resonance Raman spectra of cytochrome c oxidase in whole mitochondria,” Bull. Chem. Soc. Jpn. 75(5), 1001–1004 (2002).
    [Crossref]
  25. J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
    [Crossref] [PubMed]

2014 (1)

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

2013 (1)

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

2012 (3)

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

2011 (3)

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

2010 (1)

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

2009 (3)

Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
[Crossref]

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

2008 (3)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

2007 (1)

S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
[Crossref] [PubMed]

2006 (3)

W. Chen and J. Zhang, “Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment,” J. Nanosci. Nanotechnol. 6(4), 1159–1166 (2006).
[Crossref] [PubMed]

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref] [PubMed]

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

2005 (1)

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

2004 (1)

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

2002 (1)

T. Takahashi and T. Ogura, “Resonance Raman spectra of cytochrome c oxidase in whole mitochondria,” Bull. Chem. Soc. Jpn. 75(5), 1001–1004 (2002).
[Crossref]

2001 (1)

S. Michels and U. Schmidt-Erfurth, “Photodynamic therapy with verteporfin: a new treatment in ophthalmology,” Semin. Ophthalmol. 16(4), 201–206 (2001).
[Crossref] [PubMed]

Agostinis, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Almeida, A.

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Angell-Petersen, E.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Babilas, P.

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

Barqawi, A. B.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Berg, K.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Bisland, S. K.

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

Boulton, M.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Busch, T. M.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref] [PubMed]

Calzavara-Pinton, P.

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

Cengel, K. A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Chen, W.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

W. Chen and J. Zhang, “Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment,” J. Nanosci. Nanotechnol. 6(4), 1159–1166 (2006).
[Crossref] [PubMed]

Chen, Y. K.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Cherry, S. R.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Costa, L.

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Cunha, A.

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Davies, S.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Dube, A.

S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
[Crossref] [PubMed]

Faustino, M. A.

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Filipe, P.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Firer, M. A.

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Foster, T. H.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Freitas, J. P.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Fujiwara, H.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Germanos, M. S.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Girotti, A. W.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Gnanasammandhan, M. K.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Godley, B. F.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Golab, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Gollnick, S. O.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Gomes, M. M.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Haase, M.

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Hahn, S. M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Hamblin, M. R.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Han, X.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Hatakeyama, T.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Henderson, B. W.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref] [PubMed]

Hirschberg, H.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Ho, P. C.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Hossu, M.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Hu, Y. D.

Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
[Crossref]

Huang, Z.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Ichikawa, D.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Idris, N. M.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Ikoma, H.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Inoue, K.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Jajoo, A.

S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
[Crossref] [PubMed]

Jarrett, S. G.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Juzenas, P.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Juzeniene, A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Kessel, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Kokuba, Y.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Komatsu, S.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Korbelik, M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Kuriu, Y.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Kwong, D. W.

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Landthaler, M.

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

Laptev, R.

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Li, C.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Liang, F. Q.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Lilge, L.

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

Lin, A.

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

Ma, L.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Madsen, S. J.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Mahendran, R.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Mak, N. K.

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Malik, Z.

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Mathews, M. S.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Mazière, J. C.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Meyers, A. D.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Michels, S.

S. Michels and U. Schmidt-Erfurth, “Photodynamic therapy with verteporfin: a new treatment in ophthalmology,” Semin. Ophthalmol. 16(4), 201–206 (2001).
[Crossref] [PubMed]

Mitchell, G. S.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Moan, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Morlière, P.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Mroz, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Murayama, Y.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Musani, A. I.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Nakajima, M.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Nakanishi, M.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Neves, M. G.

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Nisnevitch, M.

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Nowis, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Ochiai, T.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Ogura, T.

T. Takahashi and T. Ogura, “Resonance Raman spectra of cytochrome c oxidase in whole mitochondria,” Bull. Chem. Soc. Jpn. 75(5), 1001–1004 (2002).
[Crossref]

Okamoto, K.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Otsuji, E.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Patterson, M. S.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

Piette, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Robertson, R.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Rossi, M. T.

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

Rusnov, R.

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

Sala, R.

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

Sanchez, R.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Santus, R.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Schäfer, H.

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

S. Michels and U. Schmidt-Erfurth, “Photodynamic therapy with verteporfin: a new treatment in ophthalmology,” Semin. Ophthalmol. 16(4), 201–206 (2001).
[Crossref] [PubMed]

Schreml, S.

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

Shamsi, F. A.

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

Sharma, S.

S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
[Crossref] [PubMed]

Shiozaki, A.

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Siboni, G.

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Silva, J. N.

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Silva, M. D.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Snyder, J. W.

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref] [PubMed]

Sun, C. H.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Szeimies, R. M.

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

Tagg, R.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Takahashi, T.

T. Takahashi and T. Ogura, “Resonance Raman spectra of cytochrome c oxidase in whole mitochondria,” Bull. Chem. Soc. Jpn. 75(5), 1001–1004 (2002).
[Crossref]

Tam, H. L.

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Venturini, M.

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

Vo, V.

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Wang, K.

Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
[Crossref]

Wang, L.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Wilson, B. C.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

Wong, K. L.

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Wong, W. K.

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Xu, H.

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Yao, M.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Zhang, J.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

W. Chen and J. Zhang, “Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment,” J. Nanosci. Nanotechnol. 6(4), 1159–1166 (2006).
[Crossref] [PubMed]

Zhang, Y.

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Zhu, T. C.

Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
[Crossref]

Zou, X.

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

M. Haase and H. Schäfer, “Upconverting Nanoparticles,” Angew. Chem. Int. Ed. Engl. 50(26), 5808–5829 (2011).
[Crossref] [PubMed]

Biomed. Mater. Eng. (1)

J. N. Silva, P. Filipe, P. Morlière, J. C. Mazière, J. P. Freitas, M. M. Gomes, and R. Santus, “Photodynamic therapy: Dermatology and ophthalmology as main fields of current applications in clinic,” Biomed. Mater. Eng. 18(4-5), 319–327 (2008).
[PubMed]

Br. J. Cancer (1)

R. Laptev, M. Nisnevitch, G. Siboni, Z. Malik, and M. A. Firer, “Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells,” Br. J. Cancer 95(2), 189–196 (2006).
[Crossref] [PubMed]

Bull. Chem. Soc. Jpn. (1)

T. Takahashi and T. Ogura, “Resonance Raman spectra of cytochrome c oxidase in whole mitochondria,” Bull. Chem. Soc. Jpn. 75(5), 1001–1004 (2002).
[Crossref]

CA Cancer J. Clin. (1)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

J. Biol. Chem. (1)

B. F. Godley, F. A. Shamsi, F. Q. Liang, S. G. Jarrett, S. Davies, and M. Boulton, “Blue light induces mitochondrial DNA damage and free radical production in epithelial cells,” J. Biol. Chem. 280(22), 21061–21066 (2005).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

W. Chen and J. Zhang, “Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment,” J. Nanosci. Nanotechnol. 6(4), 1159–1166 (2006).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

S. Sharma, A. Jajoo, and A. Dube, “5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines,” J. Photochem. Photobiol. B 88(2-3), 156–162 (2007).
[Crossref] [PubMed]

Lasers Surg. Med. (2)

B. W. Henderson, T. M. Busch, and J. W. Snyder, “Fluence rate as a modulator of PDT mechanisms,” Lasers Surg. Med. 38(5), 489–493 (2006).
[Crossref] [PubMed]

M. S. Mathews, E. Angell-Petersen, R. Sanchez, C. H. Sun, V. Vo, H. Hirschberg, and S. J. Madsen, “The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids,” Lasers Surg. Med. 41(8), 578–584 (2009).
[Crossref] [PubMed]

Nanomedicine (Lond) (1)

X. Zou, M. Yao, L. Ma, M. Hossu, X. Han, P. Juzenas, and W. Chen, “X-ray-induced nanoparticle-based photodynamic therapy of cancer,” Nanomedicine (Lond) 9(15), 2339–2351 (2014).
[Crossref] [PubMed]

Nat. Med. (1)

N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, “In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers,” Nat. Med. 18(10), 1580–1585 (2012).
[Crossref] [PubMed]

Oncol. Rep. (1)

T. Hatakeyama, Y. Murayama, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, M. Nakanishi, D. Ichikawa, H. Fujiwara, K. Okamoto, T. Ochiai, Y. Kokuba, K. Inoue, M. Nakajima, and E. Otsuji, “Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells,” Oncol. Rep. 29(3), 911–916 (2013).
[PubMed]

Org. Biomol. Chem. (1)

J. Zhang, K. L. Wong, W. K. Wong, N. K. Mak, D. W. Kwong, and H. L. Tam, “Two-photon induced luminescence, singlet oxygen generation, cellular uptake and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents,” Org. Biomol. Chem. 9(17), 6004–6010 (2011).
[Crossref] [PubMed]

Photochem. Photobiol. (2)

S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson, “Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors,” Photochem. Photobiol. 80(1), 22–30 (2004).
[Crossref] [PubMed]

P. Calzavara-Pinton, M. T. Rossi, R. Sala, and M. Venturini, “Photodynamic antifungal chemotherapy,” Photochem. Photobiol. 88(3), 512–522 (2012).
[Crossref] [PubMed]

Photodermatol. Photoimmunol. Photomed. (1)

P. Babilas, S. Schreml, M. Landthaler, and R. M. Szeimies, “Photodynamic therapy in dermatology: state-of-the-art,” Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. D. Hu, K. Wang, and T. C. Zhu, “A light blanket for intraoperative photodynamic therapy,” Proc. SPIE 7380, 73801W (2009).
[Crossref]

Semin. Ophthalmol. (1)

S. Michels and U. Schmidt-Erfurth, “Photodynamic therapy with verteporfin: a new treatment in ophthalmology,” Semin. Ophthalmol. 16(4), 201–206 (2001).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (1)

Z. Huang, H. Xu, A. D. Meyers, A. I. Musani, L. Wang, R. Tagg, A. B. Barqawi, and Y. K. Chen, “Photodynamic therapy for treatment of solid tumors--potential and technical challenges,” Technol. Cancer Res. Treat. 7(4), 309–320 (2008).
[Crossref] [PubMed]

Viruses (1)

L. Costa, M. A. Faustino, M. G. Neves, A. Cunha, and A. Almeida, “Photodynamic inactivation of mammalian viruses and bacteriophages,” Viruses 4(12), 1034–1074 (2012).
[Crossref] [PubMed]

Other (2)

J. Gonzales, G. Zamora, A. Trinidad, L. Marcu, S. Cherry, and H. Hirschberg, “Ultra low fluence rate photodynamic therapy: Simulation of light emitted by the Cerenkov effect,” in (SPIE Proceedings, 2014), 89280F.

SciDAVis, retrieved December 2014, http://scidavis.sourceforge.net/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup and characterization of LED illumination source: Bottom of PCB with LEDs (a), setup for in vitro PDT studies with PCB attached to transparent 96-well plate lid (b), normalized absorption spectra for PpIX and TPPS2a in DMSO, and emission spectra for the 405 nm and 634 nm LEDs (c), the dynamic range of the fluence rates that can be generated from each type of LED (d).

Fig. 2
Fig. 2

PDT fluence dose-response curves for MDA-MB-231-luc-D3H1 (a), U-87 MG (b), and A-498 (c) cell lines. Studies using 1 mM ALA and 634nm LEDs are shown in red, 1 mM ALA and 405 nm LEDs in blue, and 1 µg/ml TPPS2a and 405 nm LEDs in green. Coefficients of determination (R2) for each fitted curve are included in the legends.

Fig. 3
Fig. 3

The comparison of dose response curves between light only (solid lines) and 1 mM ALA PDT (dashed lines) for MDA-MB-231-luc-D3H1 (purple), U-87 MG (teal), and A-498 (orange) cell lines.

Fig. 4
Fig. 4

The comparison of LD-50 values calculated from dose-response curves for each tumor cell line using 405 nm LEDs and 634 nm LEDs (a). The ratios of LD-50 values for 405 nm versus 634 nm LEDs after normalization to wavelength dependent photon energy and PpIX extinction coefficients (b).

Fig. 5
Fig. 5

Low fluence dose thresholds for PDT studies using 1 µg/ml TPPS2a and 405 nm LEDs. Values were calculated using LD-25 points from the fitted dose-response curves for each of the three cell line.

Metrics