Abstract

We present a new semi-automatic processing method for retinal nerve fiber bundle tracing based on polarization sensitive optical coherence tomography (PS-OCT) data sets. The method for tracing is based on a nerve fiber orientation map that covers the fovea and optic nerve head (ONH) regions. In order to generate the orientation map, two types of information are used: optic axis orientation based on polarization data, and complementary information obtained from nerve fiber layer (NFL) local thickness variation to reveal fiber bundle structures around the fovea. The corresponding two orientation maps are fused into a combined fiber orientation map. En face maps of NFL retardation, thickness, and unit-depth-retardation (UDR, equivalent to birefringence) are transformed into “along-trace” maps by using the obtained traces of the nerve fiber bundles. The method is demonstrated in the eyes of healthy volunteers, and as an example of further analyses utilizing this method, maps illustrating the gradients of NFL retardation, thickness, and UDR are demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

Boy Braaf, Koenraad A. Vermeer, Mattijs de Groot, Kari V. Vienola, and Johannes F. de Boer
Biomed. Opt. Express 5(8) 2736-2758 (2014)

In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography

Barry Cense, Teresa C. Chen, B. Hyle Park, Mark C. Pierce, and Johannes F. de Boer
Opt. Lett. 27(18) 1610-1612 (2002)

Retinal nerve fiber layer reflectometry must consider directional reflectance

Xiang-Run Huang, Robert W. Knighton, William J. Feuer, and Jianzhong Qiao
Biomed. Opt. Express 7(1) 22-33 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Pollock and N. R. Miller, “The Retinal Nerve Fiber Layer,” Int. Ophthalmol. Clin. 26(4), 201–221 (1986).
    [Crossref] [PubMed]
  2. T. E. Ogden, “Nerve fiber layer of the primate retina: morphometric analysis,” Invest. Ophthalmol. Vis. Sci. 25(1), 19–29 (1984).
    [PubMed]
  3. X. R. Huang, “Polarization properties of the retinal nerve fiber layer,” Bull. Soc. Belge Ophtalmol. 302, 71–88 (2006).
    [PubMed]
  4. H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
    [Crossref] [PubMed]
  5. J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
    [PubMed]
  6. O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
    [Crossref] [PubMed]
  7. D. C. Hood and R. H. Kardon, “A framework for comparing structural and functional measures of glaucomatous damage,” Prog. Retin. Eye Res. 26(6), 688–710 (2007).
    [Crossref] [PubMed]
  8. N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
    [Crossref] [PubMed]
  9. D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
    [Crossref] [PubMed]
  10. R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
    [Crossref] [PubMed]
  11. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
    [Crossref] [PubMed]
  12. H. Diekmann and D. Fischer, “Glaucoma and optic nerve repair,” Cell Tissue Res. 353(2), 327–337 (2013).
    [Crossref] [PubMed]
  13. R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
    [Crossref] [PubMed]
  14. A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
    [Crossref] [PubMed]
  15. D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
    [Crossref] [PubMed]
  16. A. M. McKendrick, “Recent developments in perimetry: test stimuli and procedures,” Clin. Exp. Optom. 88(2), 73–80 (2005).
    [Crossref] [PubMed]
  17. D. Garway-Heath, “Optic disc imaging,” Focus - Issue 22 Summer 2002, by R. Coll. Ophthalmol. London (2002).
  18. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
    [Crossref] [PubMed]
  19. E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
    [Crossref] [PubMed]
  20. L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
    [Crossref] [PubMed]
  21. J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
    [Crossref] [PubMed]
  22. J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
    [Crossref] [PubMed]
  23. P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
    [Crossref] [PubMed]
  24. J. Nevalainen, “Utilisation of the structure of the retinal nerve fiber layer and test strategy in visual field examination,” Acta Universitatis Ouluensis. D 1057, 1057 (2010).
  25. N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
    [Crossref] [PubMed]
  26. F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
    [Crossref] [PubMed]
  27. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903 (1992).
    [Crossref]
  28. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [Crossref] [PubMed]
  29. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24(5), 300–302 (1999).
    [Crossref] [PubMed]
  30. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  31. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
    [Crossref] [PubMed]
  32. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
    [Crossref] [PubMed]
  33. D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
    [Crossref]
  34. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
  35. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
    [Crossref] [PubMed]
  36. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
    [Crossref] [PubMed]
  37. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
    [Crossref] [PubMed]
  38. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [Crossref] [PubMed]
  39. B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
    [Crossref] [PubMed]
  40. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
    [Crossref] [PubMed]
  41. B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
    [Crossref] [PubMed]
  42. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
    [Crossref] [PubMed]
  43. X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
    [Crossref] [PubMed]
  44. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
    [Crossref] [PubMed]
  45. B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
    [Crossref] [PubMed]
  46. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
    [Crossref] [PubMed]
  47. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [Crossref] [PubMed]
  48. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
    [Crossref] [PubMed]
  49. M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
    [Crossref] [PubMed]
  50. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref] [PubMed]
  51. “Safety of laser products - Part 1: Equipment classification and requirements,” IEC 60825–1 (2007).
  52. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [Crossref] [PubMed]
  53. I. G. Babatunde, “Fingerprint Image Enhancement : Segmentation to Thinning,” Int. J. Adv. Comput. Sci. Appl. 3, 15–24 (2012).
  54. L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
    [Crossref]
  55. B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
    [Crossref] [PubMed]
  56. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  57. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref] [PubMed]
  58. B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express 19(11), 10252–10268 (2011).
    [PubMed]
  59. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [Crossref] [PubMed]
  60. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27(19), 1702–1704 (2002).
    [Crossref] [PubMed]
  61. T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
    [Crossref] [PubMed]
  62. L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
    [Crossref] [PubMed]
  63. E. B. Werner and S. M. Drance, “Early Visual Field Disturbances in Glaucoma,” Arch. Ophthalmol. 95(7), 1173–1175 (1977).
    [Crossref] [PubMed]
  64. J. R. Piltz-seymour, O. Heath-phillip, and M. Stephen, “Chapter 49 Visual Fields in Glaucoma,” in Duane’s Ophthalmology on CD-ROM, W. Tasman and E. A. Jaeger, eds. (Lippincott Williams & Wilkins Publishers, 2006), Vol. 3.
  65. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
    [PubMed]
  66. G. B. Malykin, “Use of the poincare sphere in polarization optics and classical and quantum mechanics. review,” Radiophys. Quantum Electron. 40(3), 175–195 (1997).
    [Crossref]
  67. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
    [Crossref] [PubMed]

2014 (5)

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref] [PubMed]

2013 (6)

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

H. Diekmann and D. Fischer, “Glaucoma and optic nerve repair,” Cell Tissue Res. 353(2), 327–337 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express 19(11), 10252–10268 (2011).
[PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

2010 (3)

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

J. Nevalainen, “Utilisation of the structure of the retinal nerve fiber layer and test strategy in visual field examination,” Acta Universitatis Ouluensis. D 1057, 1057 (2010).

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

2009 (2)

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

2008 (6)

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

2007 (2)

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

D. C. Hood and R. H. Kardon, “A framework for comparing structural and functional measures of glaucomatous damage,” Prog. Retin. Eye Res. 26(6), 688–710 (2007).
[Crossref] [PubMed]

2006 (3)

X. R. Huang, “Polarization properties of the retinal nerve fiber layer,” Bull. Soc. Belge Ophtalmol. 302, 71–88 (2006).
[PubMed]

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref] [PubMed]

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

2005 (1)

A. M. McKendrick, “Recent developments in perimetry: test stimuli and procedures,” Clin. Exp. Optom. 88(2), 73–80 (2005).
[Crossref] [PubMed]

2004 (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

2003 (3)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

2002 (4)

2001 (1)

2000 (3)

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

1999 (2)

1998 (2)

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
[Crossref]

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

1997 (2)

G. B. Malykin, “Use of the poincare sphere in polarization optics and classical and quantum mechanics. review,” Radiophys. Quantum Electron. 40(3), 175–195 (1997).
[Crossref]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

1996 (1)

R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
[Crossref] [PubMed]

1995 (1)

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

1992 (2)

1990 (1)

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

1986 (1)

S. C. Pollock and N. R. Miller, “The Retinal Nerve Fiber Layer,” Int. Ophthalmol. Clin. 26(4), 201–221 (1986).
[Crossref] [PubMed]

1984 (1)

T. E. Ogden, “Nerve fiber layer of the primate retina: morphometric analysis,” Invest. Ophthalmol. Vis. Sci. 25(1), 19–29 (1984).
[PubMed]

1982 (1)

H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
[Crossref] [PubMed]

1977 (1)

E. B. Werner and S. M. Drance, “Early Visual Field Disturbances in Glaucoma,” Arch. Ophthalmol. 95(7), 1173–1175 (1977).
[Crossref] [PubMed]

Addicks, E. M.

H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
[Crossref] [PubMed]

Ahlers, C.

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Airaksinen, P. J.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
[Crossref] [PubMed]

Anderson, D. R.

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

Anton, A.

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

Asaoka, R.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Babatunde, I. G.

I. G. Babatunde, “Fingerprint Image Enhancement : Segmentation to Thinning,” Int. J. Adv. Comput. Sci. Appl. 3, 15–24 (2012).

Bajraszewski, T.

Barron, E.

R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
[Crossref] [PubMed]

Baumann, B.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

Baumann, S. O.

Beaton, S.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Berry, C. C.

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

Blumenthal, E. Z.

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

Broman, A. T.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref] [PubMed]

Bryan, S. R.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

Budde, W. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Burgholzer, P.

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

Burgoyne, C. F.

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

Carreras, F. J.

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

Carreras, I.

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

Castro, J. L.

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

Cavuoto, L. N.

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

Cense, B.

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).

Chauhan, B. C.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).

Chen, Z.

Chou, J. C.-K.

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

Colen, T. P.

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

Cull, G.

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

de Boer, J. F.

de Moraes, C. G. V.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Denniss, J.

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

Diekmann, H.

H. Diekmann and D. Fischer, “Glaucoma and optic nerve repair,” Cell Tissue Res. 353(2), 327–337 (2013).
[Crossref] [PubMed]

Ding, Z.

Doro, S.

P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
[Crossref] [PubMed]

Drance, S. M.

E. B. Werner and S. M. Drance, “Early Visual Field Disturbances in Glaucoma,” Arch. Ophthalmol. 95(7), 1173–1175 (1977).
[Crossref] [PubMed]

Dreher, A. W.

Dwelle, J. C.

Eilers, P. H. C.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

Elmaanaoui, B.

Elsner, A. E.

Erler, N. S.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

Fercher, A. F.

Findl, O.

Fischer, D.

H. Diekmann and D. Fischer, “Glaucoma and optic nerve repair,” Cell Tissue Res. 353(2), 327–337 (2013).
[Crossref] [PubMed]

Fitzke, F. W.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Fortune, B.

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

Fredette, M. J.

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903 (1992).
[Crossref]

Gao, W.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Garway-Heath, D. F.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Geitzenauer, W.

Girkin, C. A.

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

Goetzinger, E.

Gotzinger, E.

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Götzinger, E.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

Green, W. R.

H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
[Crossref] [PubMed]

Harwerth, R. S.

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

Hee, M. R.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903 (1992).
[Crossref]

Hertzmark, E.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

Hitchings, R. A.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Hitzenberger, C. K.

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref] [PubMed]

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Ho, T.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Hoeglinger, O.

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Hong, L.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
[Crossref]

Hood, D. C.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

D. C. Hood and R. H. Kardon, “A framework for comparing structural and functional measures of glaucomatous damage,” Prog. Retin. Eye Res. 26(6), 688–710 (2007).
[Crossref] [PubMed]

Hsu, W.-M.

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

Huang, D.

Huang, X. R.

X. R. Huang, “Polarization properties of the retinal nerve fiber layer,” Bull. Soc. Belge Ophtalmol. 302, 71–88 (2006).
[PubMed]

Huang, X.-R.

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

Huber, R.

Hutchison, D. M.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

Ishikawa, H.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Itoh, M.

Izatt, J. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Jain, A.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
[Crossref]

Jansonius, N. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Jonas, J. B.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

Jonnal, R. S.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Kardon, R. H.

D. C. Hood and R. H. Kardon, “A framework for comparing structural and functional measures of glaucomatous damage,” Prog. Retin. Eye Res. 26(6), 688–710 (2007).
[Crossref] [PubMed]

Knighton, R. W.

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

Kocaoglu, O. P.

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Konegger, T.

Kowalczyk, A.

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

Lagrèze, W. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Lamparter, J.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Lau, L.-I.

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

Lee, S.

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Lemij, H. G.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

Lesaffre, E. M. E. H.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

Levin, L. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Liebmann, J. M.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Lin, C. P.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Litschauer, M.

Liu, C. J.

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

Liu, J.-H.

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

Liu, S. S.

Makihira, T.

Makita, S.

Malykin, G. B.

G. B. Malykin, “Use of the poincare sphere in polarization optics and classical and quantum mechanics. review,” Radiophys. Quantum Electron. 40(3), 175–195 (1997).
[Crossref]

Matsumoto, C.

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

McElroy, A. B.

McKendrick, A. M.

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

A. M. McKendrick, “Recent developments in perimetry: test stimuli and procedures,” Clin. Exp. Optom. 88(2), 73–80 (2005).
[Crossref] [PubMed]

Medina, J.

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

Miao, J.

Michels, S.

Miller, D. T.

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Miller, N. R.

S. C. Pollock and N. R. Miller, “The Retinal Nerve Fiber Layer,” Int. Ophthalmol. Clin. 26(4), 201–221 (1986).
[Crossref] [PubMed]

Milner, T. E.

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Mulder, P. G.

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

Müller-Bergh, J. A.

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

Naumann, G. O.

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

Nelson, J. S.

Nevalainen, J.

J. Nevalainen, “Utilisation of the structure of the retinal nerve fiber layer and test strategy in visual field examination,” Acta Universitatis Ouluensis. D 1057, 1057 (2010).

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Ogden, T. E.

T. E. Ogden, “Nerve fiber layer of the primate retina: morphometric analysis,” Invest. Ophthalmol. Vis. Sci. 25(1), 19–29 (1984).
[PubMed]

Paetzold, J.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Park, B. H.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).

Paunescu, L. A.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. De Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).

Pircher, M.

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Poinoosawmy, D.

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

Pollock, S. C.

S. C. Pollock and N. R. Miller, “The Retinal Nerve Fiber Layer,” Int. Ophthalmol. Clin. 26(4), 201–221 (1986).
[Crossref] [PubMed]

Price, L. L.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Puliafito, C. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Quigley, H. A.

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref] [PubMed]

H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
[Crossref] [PubMed]

Raza, A. S.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Reiter, K.

Ren, H.

Reynaud, J.

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

Ritch, R.

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

Ritter, M.

Roberts, P.

Ruiz-Lozano, M.

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

Russell, R. A.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Rylander, H. G.

Saito, K.

Sample, P. A.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

Sato, M.

Sattmann, H.

Schiefer, U.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Schlanitz, F.

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Schlötzer-Schrehardt, U. M.

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

Schmidt-Erfurth, U.

M. Sugita, S. Zotter, M. Pircher, T. Makihira, K. Saito, N. Tomatsu, M. Sato, P. Roberts, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Motion artifact and speckle noise reduction in polarization sensitive optical coherence tomography by retinal tracking,” Biomed. Opt. Express 5(1), 106–122 (2014).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3(7), 1670–1683 (2012).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Schmoll, T.

Schuman, J. S.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Schütze, C.

Schuutze, C.

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Selig, B.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Sharpe, G. P.

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

Skaf, M.

R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
[Crossref] [PubMed]

Stark, P. C.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Sticker, M.

Stifter, D.

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

Sugita, M.

Sutoh, Y.

Swanson, E. A.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903 (1992).
[Crossref]

Szkulmowska, A.

Szkulmowski, M.

Tanabe, F.

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

Tjon-Fo-sang, M. J.

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

Tomatsu, N.

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

Trasischker, W.

Turpin, A.

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

van Gemert, M. J.

Varma, R.

R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
[Crossref] [PubMed]

Vass, C.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

Veijola, J.

P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
[Crossref] [PubMed]

Vermeer, K. A.

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

Vonthein, R.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

Wan, Y.

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
[Crossref]

Wang, B.

Wang, L.

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

Wang, Q.

B. Cense, Q. Wang, S. Lee, L. Zhao, A. E. Elsner, C. K. Hitzenberger, and D. T. Miller, “Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4(11), 2296–2306 (2013).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Weinreb, R. N.

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

Werner, E. B.

E. B. Werner and S. M. Drance, “Early Visual Field Disturbances in Glaucoma,” Arch. Ophthalmol. 95(7), 1173–1175 (1977).
[Crossref] [PubMed]

Wheat, J. L.

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

Williams, J. M.

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

Wojtkowski, M.

Wollstein, G.

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

Wong, C.

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Yamagishi, N.

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[Crossref] [PubMed]

Yamashita, T.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
[Crossref] [PubMed]

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

Zangwill, L.

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

Zangwill, L. M.

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

Zhao, L.

Zhao, Y.

Zhu, H.

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

Zotter, S.

Acta Universitatis Ouluensis. D (1)

J. Nevalainen, “Utilisation of the structure of the retinal nerve fiber layer and test strategy in visual field examination,” Acta Universitatis Ouluensis. D 1057, 1057 (2010).

Am. J. Ophthalmol. (1)

A. Anton, N. Yamagishi, L. Zangwill, P. A. Sample, and R. N. Weinreb, “Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy,” Am. J. Ophthalmol. 125(4), 436–446 (1998).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

D. Stifter, P. Burgholzer, O. Hoeglinger, E. Götzinger, and C. K. Hitzenberger, “Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping,” Appl. Phys., A Mater. Sci. Process. 76, 947–951 (2003).
[Crossref]

Arch. Ophthalmol. (3)

E. B. Werner and S. M. Drance, “Early Visual Field Disturbances in Glaucoma,” Arch. Ophthalmol. 95(7), 1173–1175 (1977).
[Crossref] [PubMed]

J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Quantification of Nerve Fiber Layer Thickness in Normal and Glaucomatous Eyes Using Optical Coherence Tomography,” Arch. Ophthalmol. 113(5), 586–596 (1995).
[Crossref] [PubMed]

H. A. Quigley, E. M. Addicks, and W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. 100(1), 135–146 (1982).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (1)

H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006).
[Crossref] [PubMed]

Bull. Soc. Belge Ophtalmol. (1)

X. R. Huang, “Polarization properties of the retinal nerve fiber layer,” Bull. Soc. Belge Ophtalmol. 302, 71–88 (2006).
[PubMed]

Cell Tissue Res. (1)

H. Diekmann and D. Fischer, “Glaucoma and optic nerve repair,” Cell Tissue Res. 353(2), 327–337 (2013).
[Crossref] [PubMed]

Clin. Exp. Optom. (1)

A. M. McKendrick, “Recent developments in perimetry: test stimuli and procedures,” Clin. Exp. Optom. 88(2), 73–80 (2005).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement : algorithm and performance evaluation,” IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998).
[Crossref]

Int. J. Adv. Comput. Sci. Appl. (1)

I. G. Babatunde, “Fingerprint Image Enhancement : Segmentation to Thinning,” Int. J. Adv. Comput. Sci. Appl. 3, 15–24 (2012).

Int. Ophthalmol. Clin. (1)

S. C. Pollock and N. R. Miller, “The Retinal Nerve Fiber Layer,” Int. Ophthalmol. Clin. 26(4), 201–221 (1986).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (11)

T. E. Ogden, “Nerve fiber layer of the primate retina: morphometric analysis,” Invest. Ophthalmol. Vis. Sci. 25(1), 19–29 (1984).
[PubMed]

J. B. Jonas, J. A. Müller-Bergh, U. M. Schlötzer-Schrehardt, and G. O. Naumann, “Histomorphometry of the human optic nerve,” Invest. Ophthalmol. Vis. Sci. 31(4), 736–744 (1990).
[PubMed]

N. S. Erler, S. R. Bryan, P. H. C. Eilers, E. M. E. H. Lesaffre, H. G. Lemij, and K. A. Vermeer, “Optimizing structure-function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models,” Invest. Ophthalmol. Vis. Sci. 55(4), 2350–2357 (2014).
[Crossref] [PubMed]

F. J. Carreras, J. Medina, M. Ruiz-Lozano, I. Carreras, and J. L. Castro, “Virtual tissue engineering and optic pathways: plotting the course of the axons in the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 55(5), 3107–3119 (2014).
[Crossref] [PubMed]

L. A. Paunescu, J. S. Schuman, L. L. Price, P. C. Stark, S. Beaton, H. Ishikawa, G. Wollstein, and J. G. Fujimoto, “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratus OCT,” Invest. Ophthalmol. Vis. Sci. 45(6), 1716–1724 (2004).
[Crossref] [PubMed]

J. Denniss, A. Turpin, F. Tanabe, C. Matsumoto, and A. M. McKendrick, “Structure-function mapping: variability and conviction in tracing retinal nerve fiber bundles and comparison to a computational model,” Invest. Ophthalmol. Vis. Sci. 55(2), 728–736 (2014).
[Crossref] [PubMed]

J. Lamparter, R. A. Russell, H. Zhu, R. Asaoka, T. Yamashita, T. Ho, and D. F. Garway-Heath, “The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 54(9), 6074–6082 (2013).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[Crossref] [PubMed]

B. Fortune, C. F. Burgoyne, G. Cull, J. Reynaud, and L. Wang, “Onset and progression of peripapillary retinal nerve fiber layer (RNFL) retardance changes occur earlier than RNFL thickness changes in experimental glaucoma,” Invest. Ophthalmol. Vis. Sci. 54(8), 5653–5661 (2013).
[Crossref] [PubMed]

X.-R. Huang, R. W. Knighton, and L. N. Cavuoto, “Microtubule contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Vis. Sci. 47(12), 5363–5367 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7(3), 359–371 (2002).
[Crossref] [PubMed]

J. Biophotonics (1)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J. Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

J. Glaucoma (1)

T. P. Colen, M. J. Tjon-Fo-sang, P. G. Mulder, and H. G. Lemij, “Reproducibility of measurements with the nerve fiber analyzer (NfA/GDx),” J. Glaucoma 9(5), 363–370 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Ophthalmology (5)

R. Varma, M. Skaf, and E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103(12), 2114–2119 (1996).
[Crossref] [PubMed]

E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology 107(12), 2278–2282 (2000).
[Crossref] [PubMed]

D. F. Garway-Heath, D. Poinoosawmy, F. W. Fitzke, and R. A. Hitchings, “Mapping the visual field to the optic disc in normal tension glaucoma eyes,” Ophthalmology 107(10), 1809–1815 (2000).
[Crossref] [PubMed]

L.-I. Lau, C. J. Liu, J. C.-K. Chou, W.-M. Hsu, and J.-H. Liu, “Patterns of visual field defects in chronic angle-closure glaucoma with different disease severity,” Ophthalmology 110(10), 1890–1894 (2003).
[Crossref] [PubMed]

B. C. Chauhan, G. P. Sharpe, and D. M. Hutchison, “Imaging of the temporal raphe with optical coherence tomography,” Ophthalmology 121(11), 2287–2288 (2014).
[Crossref] [PubMed]

Opt. Express (9)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[Crossref] [PubMed]

B. Elmaanaoui, B. Wang, J. C. Dwelle, A. B. McElroy, S. S. Liu, H. G. Rylander, and T. E. Milner, “Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography,” Opt. Express 19(11), 10252–10268 (2011).
[PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (1)

P. J. Airaksinen, S. Doro, and J. Veijola, “Conformal geometry of the retinal nerve fiber layer,” Proc. Natl. Acad. Sci. U.S.A. 105(50), 19690–19695 (2008).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (4)

R. S. Harwerth, J. L. Wheat, M. J. Fredette, and D. R. Anderson, “Linking structure and function in glaucoma,” Prog. Retin. Eye Res. 29(4), 249–271 (2010).
[Crossref] [PubMed]

D. C. Hood, A. S. Raza, C. G. V. de Moraes, J. M. Liebmann, and R. Ritch, “Glaucomatous damage of the macula,” Prog. Retin. Eye Res. 32, 1–21 (2013).
[Crossref] [PubMed]

D. C. Hood and R. H. Kardon, “A framework for comparing structural and functional measures of glaucomatous damage,” Prog. Retin. Eye Res. 26(6), 688–710 (2007).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Radiophys. Quantum Electron. (1)

G. B. Malykin, “Use of the poincare sphere in polarization optics and classical and quantum mechanics. review,” Radiophys. Quantum Electron. 40(3), 175–195 (1997).
[Crossref]

Vision Res. (2)

N. M. Jansonius, J. Nevalainen, B. Selig, L. M. Zangwill, P. A. Sample, W. M. Budde, J. B. Jonas, W. A. Lagrèze, P. J. Airaksinen, R. Vonthein, L. A. Levin, J. Paetzold, and U. Schiefer, “A mathematical description of nerve fiber bundle trajectories and their variability in the human retina,” Vision Res. 49(17), 2157–2163 (2009).
[Crossref] [PubMed]

O. P. Kocaoglu, B. Cense, R. S. Jonnal, Q. Wang, S. Lee, W. Gao, and D. T. Miller, “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).
[Crossref] [PubMed]

Other (3)

D. Garway-Heath, “Optic disc imaging,” Focus - Issue 22 Summer 2002, by R. Coll. Ophthalmol. London (2002).

J. R. Piltz-seymour, O. Heath-phillip, and M. Stephen, “Chapter 49 Visual Fields in Glaucoma,” in Duane’s Ophthalmology on CD-ROM, W. Tasman and E. A. Jaeger, eds. (Lippincott Williams & Wilkins Publishers, 2006), Vol. 3.

“Safety of laser products - Part 1: Equipment classification and requirements,” IEC 60825–1 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Data acquisition and processing steps.
Fig. 2
Fig. 2 Segmentation of ILM, NFL/GCL and IPL/INL interfaces. (a): Intensity B-scan; red, yellow, and green pixels indicate the segmented boundaries of ILM, NFL/GCL and IPL/INL. (b): Intensity projection; yellow line indicates the position of B-scan. (c) and (d): Binarization results; using intensity thresholds (3.7 for (c), and 3.9 for (d) in log10 scale); orange color: foreground pixels, gray color: background pixels. (e) and (f): Uppermost connected sets of the foreground pixels along each A-scan; processed from (c) and (d), respectively. (g): Result of applying a series of morphological image processing (cascaded dilations and erosions) to (f).
Fig. 3
Fig. 3 Projected en face maps from a healthy volunteer after registration. Intensity projection (a) – (c); axis orientation (d) – (f); retardation (g) – (i). The best quality frame (a), (d), (g); the lowest quality frame (b), (e), (h); averaged frame (c), (f), (i) out of 5 volumes. Color scales: −90° – + 90° for axis orientation, and 0° – 30° for retardation. Gray pixels indicate having too low number of segmented voxels for evaluation.
Fig. 4
Fig. 4 Fiber bundle orientation detection by NFL thickness map. (a): NFL thickness map; color scale: 0 – 180 μm. (b) Local thickness variation calculated by an adaptive filtering; color scale: −8 – + 15 μm (gray color: < −8 μm; white color: > + 15 μm). (c) Selected pixels from (b), having local thickness variation within −2 – + 2 μm range; a morphologic image processing (erosion and dilation by 1 pixel in both horizontal and vertical directions) was applied; color scale: −4 – + 9 μm (gray color: pixels excluded from processing). (d) Fiber bundle orientation calculated by local gradient of (c) within 120 × 120 pixel evaluation window; color scale: −90° – + 90°.
Fig. 5
Fig. 5 Fusion of ONH and foveal zone maps for fiber orientation. (a): Axis orientation obtained by polarization data from PS-OCT (5 frame averaged). (b): Fiber bundle orientation obtained by NFL thickness map. (c): Retardation; color scale 0° – 8°; white and black lines: boundaries of 7° and 5°, respectively. (d): Combined orientation from (a) and (b); low retardation zone with < 5° of (a) is replaced by corresponding zone of (b), and transition zone from 5° to 7° is linearly interpolated.
Fig. 6
Fig. 6 Fiber bundle tracing by fiber orientation map. (a): Tracing process; black and red arrows overlaid on the fiber orientation map indicate the tracing steps (arrows are not in scale; length of black arrow: 0.5 DD, red arrow: 0.035 mm). (b): Traced lines (displayed in black color) with azimuthal angle of 3° pitch (120 lines) overlaid on axis orientation map.
Fig. 7
Fig. 7 Fiber bundle tracing results for three healthy eyes B, C, D. (a), (c), (e): OCT intensity projection. (b), (d), (f): Fiber orientation maps with traced lines (azimuthal angle pitch 3° (120 lines)). Healthy eye B: (a), (b); healthy eye C: (c), (d); healthy eye D: (e), (f). Magenta rectangle in (a) and (b) indicates the area where a bundle orientation error exists due to thin vessels.
Fig. 8
Fig. 8 Fiber bundle tracing and maps along the trace in healthy eye A. (a): Axis orientation en face map with traces; 90 tracing lines with an azimuthal angle pitch of 4°. (b): Retardation, (c): NFL thickness, and (d) UDR en face maps. (e), (f), and (g): Maps along trace; retardation (e), NFL thickness (f), UDR (g); horizontal red dashed line indicates position with distance of 1.7 mm from the ONH center. Color scales: −90° – + 90° for axis orientation, 0° – 30° for retardation, 0 – 250 μm for NFL thickness, and 0° – 0.3° / μm for UDR.
Fig. 9
Fig. 9 Fiber bundle tracing and retardation map along the trace for healthy eyes B, C, and D. (a) – (c): Fiber orientation en face map with traces (90 tracing lines with an azimuthal angle pitch of 4°). (d) – (f): Retardation en face maps. (g) – (i): Retardation map along trace. (j) – (l): UDR along the trace. Horizontal red dashed line in (g) – (l) indicates position at a distance of 1.7 mm from the ONH center. Healthy eye B: (a), (d), (g), (j); healthy eye C: (b), (e), (h), (k); healthy eye D: (c), (f), (i), (l). Color scales: −90° – + 90° for axis orientation, 0° – 30° for retardation, and 0° – 0.3° / μm for UDR.
Fig. 10
Fig. 10 Traces analyzed in Figs. 11 and 12 shown in healthy eye A, overlaid on (a) retardation, (b) thickness, (c) UDR en face maps. Red dashed line: positions at traced distance of 1.7 mm from the center of the ONH. Yellow and black dashed lines: traces corresponding to 12 azimuthal angles (values indicated near the end points of the traces); each length along the trace is 4 mm (for yellow lines) or less when the trace reached an edge (for black lines). Color scales: −90° – + 90° for axis orientation, 0° – 30° for retardation, and 0° – 0.3° / μm for UDR.
Fig. 11
Fig. 11 NFL retardation, thickness, and UDR characteristics in healthy eye A. (a), (b): Retardation; (c), (d): NFL thickness; (e), (f): UDR. (a), (c), (e): Circum- papillary (TSNIT) plots at a distance of 1.7 mm from ONH center; blue dashed lines indicate the 12 azimuthal angles corresponding to (b), (d), (f)). (b), (d), (f): Plots along fiber-bundle traces; red dashed line indicates the position corresponding to (a), (c), (e). Horizontal black dashed lines indicate typical values of each plots, to be used for normalization of the gradient maps in Figs. 12 and 13.
Fig. 12
Fig. 12 Gradient maps along the trace in healthy eye A. (a): NFL retardation gradient, (b): NFL thickness gradient, (c): NFL UDR gradient; horizontal yellow lines in the maps along the trace indicates position with distance of 1.7 mm from the ONH center; gray pixels indicate too low number of pixels for fitting. (d): Retardation en face map showing excluded pixels before the evaluation of gradient, displayed in gray color.
Fig. 13
Fig. 13 Gradient maps along the trace in healthy eyes A, B, C, D in comparison. (a) – (d): NFL retardation gradient, (e) – (h): NFL thickness gradient, (i) – (l): NFL UDR gradient. Horizontal yellow line indicates position at distance of 1.7 mm from the ONH center; gray pixels indicate too low number of pixels for fitting. Color scale: + 1 (blue) – −1 (red).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I= A H 2 + A V 2 ,
Q= A H 2 A V 2 ,
U=2 A H A V cosΔϕ,
V=2 A H A V sinΔϕ,
δ=arctan( A V A H ),
θ= πΔϕ 2 .
Q ˜ =cos2δ,
U ˜ =sin2δcos(π2θ),
V ˜ =sin2δsin(π2θ).
δ= 1 2 arccos Q ˜ ,
θ= 1 2 [ πarctan( V ˜ U ˜ ) ].
δ ave = 1 2 arccos( Q ˜ R ),
θ ave = 1 2 [ πarctan( V ˜ R U ˜ R ) ].
δ ave = 1 2 arccos Q ˜ = 1 2 arccos( 1 N n=1 N cos2 δ n ).
δ ave δ ave = 1 2 [ arccos Q ˜ arccos Q ˜ R ],

Metrics