Abstract

We propose the use of thermoelastic (TE) excitation of an ultrasonic (US) detector by backscattered laser radiation as a means of upgrading a single-modality photoacoustic (PA) microscope to dual-modality PA/US imaging at minimal cost. The upgraded scanning head of our dual-modality microscope consists of a fiber bundle with 14 output arms and a 32MHz polyvinylidene difluoride (PVDF) detector with a 34 MHz bandwidth (−6 dB level), 12.7 mm focal length, and a 0.25 numerical aperture. A single optical pulse delivered through the fiber bundle to the biotissue being investigated, in combination with a metalized surface on the PVDF detector allows us to obtain both PA and US A-scans. To demonstrate the in vivo capabilities of the proposed method we present the results of bimodal imaging of the brain of a newborn rat, a mouse tail and a mouse tumor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study

Pavel Subochev, Alexey Katichev, Andrey Morozov, Anna Orlova, Vladislav Kamensky, and Ilya Turchin
Opt. Lett. 37(22) 4606-4608 (2012)

Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure, and ultrasonic scattering

Pavel Subochev, Anna Orlova, Irina Mikhailova, Natalia Shilyagina, and Ilya Turchin
Biomed. Opt. Express 7(10) 3951-3957 (2016)

Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography

Gerhild Wurzinger, Robert Nuster, Nicole Schmitner, Sibylle Gratt, Dirk Meyer, and Günther Paltauf
Biomed. Opt. Express 4(8) 1380-1389 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
    [Crossref] [PubMed]
  2. I. Y. Petrov, Y. Petrov, D. S. Prough, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation through extracerebral blood,” Biomed. Opt. Express 3(1), 125–136 (2012).
    [Crossref] [PubMed]
  3. J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).
  4. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
    [Crossref] [PubMed]
  5. A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
    [Crossref] [PubMed]
  6. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
    [Crossref] [PubMed]
  7. J. Laufer, A. Jathoul, M. Pule, and P. Beard, “In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy,” Biomed. Opt. Express 4(11), 2477–2490 (2013).
    [Crossref] [PubMed]
  8. J. Powers and F. Kremkau, “Medical ultrasound systems,” Interface Focus 1(4), 477–489 (2011).
    [Crossref] [PubMed]
  9. A. A. Oraevsky, S. A. Ermilov, A. Conjusteau, P. Brecht, V. Nadvoretskiy, R. Su, D. G. Herzog, B. Clingman, and J. Zalev, “Dual modality imaging system for coregistered functional and anatomical mapping,” (WO Patent 2,013,067,419, 2013).
  10. R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
    [Crossref] [PubMed]
  11. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [Crossref] [PubMed]
  12. A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
    [Crossref] [PubMed]
  13. K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
    [Crossref] [PubMed]
  14. J. Gateau, A. Chekkoury, and V. Ntziachristos, “Ultra-wideband three-dimensional optoacoustic tomography,” Opt. Lett. 38(22), 4671–4674 (2013).
    [Crossref] [PubMed]
  15. X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
    [Crossref] [PubMed]
  16. V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
    [Crossref] [PubMed]
  17. V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
    [Crossref] [PubMed]
  18. M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
    [Crossref] [PubMed]
  19. P. Subochev, A. Katichev, A. Morozov, A. Orlova, V. Kamensky, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study,” Opt. Lett. 37(22), 4606–4608 (2012).
    [Crossref] [PubMed]
  20. J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
    [Crossref] [PubMed]
  21. J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
    [Crossref] [PubMed]
  22. G. Wurzinger, R. Nuster, N. Schmitner, S. Gratt, D. Meyer, and G. Paltauf, “Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography,” Biomed. Opt. Express 4(8), 1380–1389 (2013).
    [Crossref] [PubMed]
  23. D. Tsyboulski, A. Conjusteau, and A. Oraevsky, “Dual modality optoacoustic and laser ultrasound endoscopy system,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89432S–89432S–89435.
  24. T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
    [Crossref]
  25. H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
  26. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [Crossref] [PubMed]
  27. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [Crossref] [PubMed]
  28. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  29. Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
    [Crossref] [PubMed]
  30. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  31. M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
    [Crossref] [PubMed]
  32. S. Kellnberger, N. C. Deliolanis, D. Queirós, G. Sergiadis, and V. Ntziachristos, “In vivo frequency domain optoacoustic tomography,” Opt. Lett. 37(16), 3423–3425 (2012).
    [Crossref] [PubMed]
  33. B. Liu, R. Kruger, D. Reinecke, and K. M. Stantz, “Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner,” in BiOS, (International Society for Optics and Photonics, 2010), 756439.
  34. The Laboratory Mouse, 2nd ed. Hans Hedrich ed. (Academic Press, 2012).
  35. E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
    [Crossref] [PubMed]
  36. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
    [Crossref] [PubMed]
  37. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  38. B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
    [Crossref]
  39. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy,” J. Appl. Phys. 105(10), 102027 (2009).
    [Crossref] [PubMed]
  40. V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
    [Crossref]
  41. M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref] [PubMed]
  42. Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
    [Crossref] [PubMed]
  43. M. Jaeger, K. Gashi, H. G. Akarçay, G. Held, S. Peeters, T. Petrosyan, S. Preisser, M. Gruenig, and M. Frenz, “Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging,” Photonics & Lasers in Medicine (2014).
  44. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
    [Crossref] [PubMed]
  45. M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
    [Crossref] [PubMed]
  46. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
    [Crossref]
  47. Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
    [Crossref] [PubMed]

2014 (7)

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
[Crossref] [PubMed]

V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
[Crossref]

Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
[Crossref] [PubMed]

2013 (8)

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

G. Wurzinger, R. Nuster, N. Schmitner, S. Gratt, D. Meyer, and G. Paltauf, “Simultaneous three-dimensional photoacoustic and laser-ultrasound tomography,” Biomed. Opt. Express 4(8), 1380–1389 (2013).
[Crossref] [PubMed]

J. Gateau, A. Chekkoury, and V. Ntziachristos, “Ultra-wideband three-dimensional optoacoustic tomography,” Opt. Lett. 38(22), 4671–4674 (2013).
[Crossref] [PubMed]

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

J. Laufer, A. Jathoul, M. Pule, and P. Beard, “In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy,” Biomed. Opt. Express 4(11), 2477–2490 (2013).
[Crossref] [PubMed]

2012 (9)

I. Y. Petrov, Y. Petrov, D. S. Prough, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, “Optoacoustic monitoring of cerebral venous blood oxygenation through extracerebral blood,” Biomed. Opt. Express 3(1), 125–136 (2012).
[Crossref] [PubMed]

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

P. Subochev, A. Katichev, A. Morozov, A. Orlova, V. Kamensky, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study,” Opt. Lett. 37(22), 4606–4608 (2012).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

S. Kellnberger, N. C. Deliolanis, D. Queirós, G. Sergiadis, and V. Ntziachristos, “In vivo frequency domain optoacoustic tomography,” Opt. Lett. 37(16), 3423–3425 (2012).
[Crossref] [PubMed]

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

2011 (5)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

J. Powers and F. Kremkau, “Medical ultrasound systems,” Interface Focus 1(4), 477–489 (2011).
[Crossref] [PubMed]

2010 (2)

B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2006 (2)

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

2005 (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

2004 (1)

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

2003 (1)

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
[Crossref] [PubMed]

1991 (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Allen, T. J.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Anastasio, M. A.

Andreev, V. G.

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
[Crossref] [PubMed]

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Bamber, J.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Bates, D.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Beard, P.

Beard, P. C.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Bellec, P.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Berti, R.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Bouchard, R.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Brands, P.

Burton, N. C.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

Cannata, J. M.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Carson, P. L.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Chekkoury, A.

Chen, S.-L.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Chen, Y.-C.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Chen, Y.-S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Cicenaite, I.

Cornelius, L. A.

Cox, B.

B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

Daoudi, K.

Deán-Ben, X. L.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Deliolanis, N. C.

Deyo, D. J.

Dhillon, A. P.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Emelianov, S.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Esenaliev, R. O.

Fehm, T. F.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Fiks, I.

V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
[Crossref]

Forbrich, A.

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

Foster, F. S.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Fowlkes, J. B.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Frey, W.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Gateau, J.

Gertsch, A.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Gratt, S.

Grootendorst, D. J.

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Guevara, E.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Guo, L. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Hall, A.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Harris-Birtill, D.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Harrison, T.

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Heinmiller, A.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Hirson, D.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Homan, K.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Hu, C.

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Huang, C.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jaeger, M.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Jathoul, A.

Jiang, Y.

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

Jose, J.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Kamensky, V.

Karabutov, A.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Karabutov, A. A.

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
[Crossref] [PubMed]

Katichev, A.

Kellnberger, S.

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Khokhlova, T.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Kim, S.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Kohl, A.

Kozhushko, V.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Kremkau, F.

J. Powers and F. Kremkau, “Medical ultrasound systems,” Interface Focus 1(4), 477–489 (2011).
[Crossref] [PubMed]

Kruizinga, P.

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Laufer, J.

Lee, K.-T.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Lesage, F.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Li, M.-L.

Ling, T.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Lodygensky, G. A.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Londono, I.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Manohar, S.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Maslov, K.

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy,” J. Appl. Phys. 105(10), 102027 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

Maslov, K. I.

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Meyer, D.

Morozov, A.

Morscher, S.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

Needles, A.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Ntziachristos, V.

Nuster, R.

O’Flynn, E.

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Omar, M.

Oraevsky, A. A.

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
[Crossref] [PubMed]

Orlova, A.

Owen, J. S.

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Paltauf, G.

Park, H. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Pelivanov, I.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Perekatova, V.

V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
[Crossref]

Petrov, I. Y.

Petrov, Y.

Powers, J.

J. Powers and F. Kremkau, “Medical ultrasound systems,” Interface Focus 1(4), 477–489 (2011).
[Crossref] [PubMed]

Prough, D. S.

Pule, M.

Queirós, D.

Rabot, O.

Raivich, G.

Razansky, D.

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

Ruers, T. J.

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Sahin, O.

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

Schmitner, N.

Sergiadis, G.

Slump, C. H.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Soliman, D.

Solomatin, V.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Steenbergen, W.

K. Daoudi, P. J. van den Berg, O. Rabot, A. Kohl, S. Tisserand, P. Brands, and W. Steenbergen, “Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging,” Opt. Express 22(21), 26365–26374 (2014).
[Crossref] [PubMed]

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Stein, E. W.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy,” J. Appl. Phys. 105(10), 102027 (2009).
[Crossref] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

Subochev, P.

V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
[Crossref]

P. Subochev, A. Katichev, A. Morozov, A. Orlova, V. Kamensky, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study,” Opt. Lett. 37(22), 4606–4608 (2012).
[Crossref] [PubMed]

Sun, J.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Taruttis, A.

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

Theodoropoulos, C.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Tian, Y.

Tisserand, S.

Treeby, B. E.

B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

Turchin, I.

Van Boven, H.

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

van den Berg, P. J.

van Leeuwen, T. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Vijn, T. W.

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Wang, L. V.

Wang, X.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[Crossref] [PubMed]

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Willemink, R. G.

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Wouters, M. W.

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

Wu, N.

Wurzinger, G.

Xia, J.

Xie, N.

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Xie, Z.

Xing, W.

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Yin, M.

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Zemp, R. J.

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

Zhang, E.

Zhang, E. Z.

B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

Zhang, H. E.

Zhang, H. F.

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method,” Appl. Opt. 48(17), 3204–3211 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Zharinov, A.

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

Zhou, Y.

Zou, X.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

T. F. Fehm, X. L. Deán-Ben, and D. Razansky, “Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe,” Appl. Phys. Lett. 105(17), 173505 (2014).
[Crossref]

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008).
[Crossref]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

A. Needles, A. Heinmiller, J. Sun, C. Theodoropoulos, D. Bates, D. Hirson, M. Yin, and F. S. Foster, “Development and initial application of a fully integrated photoacoustic micro-ultrasound system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(5), 888–897 (2013).
[Crossref] [PubMed]

R. Bouchard, O. Sahin, and S. Emelianov, “Ultrasound-guided photoacoustic imaging: current state and future development,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(3), 450–466 (2014).
[Crossref] [PubMed]

V. G. Andreev, A. A. Karabutov, and A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1383–1390 (2003).
[Crossref] [PubMed]

Interface Focus (2)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
[Crossref] [PubMed]

J. Powers and F. Kremkau, “Medical ultrasound systems,” Interface Focus 1(4), 477–489 (2011).
[Crossref] [PubMed]

Inverse Probl. (1)

B. E. Treeby, E. Z. Zhang, and B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Probl. 26(11), 115003 (2010).
[Crossref]

J. Acoust. Soc. Am. (1)

V. Kozhushko, T. Khokhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, “Focused array transducer for two-dimensional optoacoustic tomography,” J. Acoust. Soc. Am. 116(3), 1498–1506 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy,” J. Appl. Phys. 105(10), 102027 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

Y. Jiang, A. Forbrich, T. Harrison, and R. J. Zemp, “Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: a phantom study,” J. Biomed. Opt. 17(3), 036012 (2012).
[Crossref] [PubMed]

M. Jaeger, D. Harris-Birtill, A. Gertsch, E. O’Flynn, and J. Bamber, “Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo,” J. Biomed. Opt. 17(6), 066007 (2012).
[Crossref] [PubMed]

J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. Van Boven, T. G. Van Leeuwen, W. Steenbergen, T. J. Ruers, and S. Manohar, “Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography,” J. Biomed. Opt. 16, 096021 (2011).

T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt. 17(6), 061209 (2012).
[Crossref] [PubMed]

Med. Phys. (1)

J. Jose, R. G. Willemink, W. Steenbergen, C. H. Slump, T. G. van Leeuwen, and S. Manohar, “Speed-of-sound compensated photoacoustic tomography for accurate imaging,” Med. Phys. 39(12), 7262–7271 (2012).
[Crossref] [PubMed]

Nano Lett. (1)

Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov, “Silica-coated gold nanorods as photoacoustic signal nanoamplifiers,” Nano Lett. 11(2), 348–354 (2011).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (8)

Y. Zhou, W. Xing, K. I. Maslov, L. A. Cornelius, and L. V. Wang, “Handheld photoacoustic microscopy to detect melanoma depth in vivo,” Opt. Lett. 39(16), 4731–4734 (2014).
[Crossref] [PubMed]

M.-L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref] [PubMed]

J. Gateau, A. Chekkoury, and V. Ntziachristos, “Ultra-wideband three-dimensional optoacoustic tomography,” Opt. Lett. 38(22), 4671–4674 (2013).
[Crossref] [PubMed]

M. Omar, D. Soliman, J. Gateau, and V. Ntziachristos, “Ultrawideband reflection-mode optoacoustic mesoscopy,” Opt. Lett. 39(13), 3911–3914 (2014).
[Crossref] [PubMed]

J. Xia, C. Huang, K. Maslov, M. A. Anastasio, and L. V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Opt. Lett. 38(16), 3140–3143 (2013).
[Crossref] [PubMed]

S. Kellnberger, N. C. Deliolanis, D. Queirós, G. Sergiadis, and V. Ntziachristos, “In vivo frequency domain optoacoustic tomography,” Opt. Lett. 37(16), 3423–3425 (2012).
[Crossref] [PubMed]

P. Subochev, A. Katichev, A. Morozov, A. Orlova, V. Kamensky, and I. Turchin, “Simultaneous photoacoustic and optically mediated ultrasound microscopy: phantom study,” Opt. Lett. 37(22), 4606–4608 (2012).
[Crossref] [PubMed]

M. Omar, J. Gateau, and V. Ntziachristos, “Raster-scan optoacoustic mesoscopy in the 25-125 MHz range,” Opt. Lett. 38(14), 2472–2474 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

PLoS ONE (2)

A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, and V. Ntziachristos, “Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs,” PLoS ONE 7(1), e30491 (2012).
[Crossref] [PubMed]

E. Guevara, R. Berti, I. Londono, N. Xie, P. Bellec, F. Lesage, and G. A. Lodygensky, “Imaging of an inflammatory injury in the newborn rat brain with photoacoustic tomography,” PLoS ONE 8(12), e83045 (2013).
[Crossref] [PubMed]

Radiophys. Quantum Electron. (1)

V. Perekatova, I. Fiks, and P. Subochev, “Image Correction in Optoacoustic Microscopy. Numerical Simulation,” Radiophys. Quantum Electron. 57(1), 67–79 (2014).
[Crossref]

Sci. Rep. (1)

H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee, Y.-C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).

Ultrasound Med. Biol. (1)

X. Wang, J. B. Fowlkes, J. M. Cannata, C. Hu, and P. L. Carson, “Photoacoustic imaging with a commercial ultrasound system and a custom probe,” Ultrasound Med. Biol. 37(3), 484–492 (2011).
[Crossref] [PubMed]

Other (5)

A. A. Oraevsky, S. A. Ermilov, A. Conjusteau, P. Brecht, V. Nadvoretskiy, R. Su, D. G. Herzog, B. Clingman, and J. Zalev, “Dual modality imaging system for coregistered functional and anatomical mapping,” (WO Patent 2,013,067,419, 2013).

D. Tsyboulski, A. Conjusteau, and A. Oraevsky, “Dual modality optoacoustic and laser ultrasound endoscopy system,” in SPIE BiOS, (International Society for Optics and Photonics, 2014), 89432S–89432S–89435.

B. Liu, R. Kruger, D. Reinecke, and K. M. Stantz, “Monitor hemoglobin concentration and oxygen saturation in living mouse tail using photoacoustic CT scanner,” in BiOS, (International Society for Optics and Photonics, 2010), 756439.

The Laboratory Mouse, 2nd ed. Hans Hedrich ed. (Academic Press, 2012).

M. Jaeger, K. Gashi, H. G. Akarçay, G. Held, S. Peeters, T. Petrosyan, S. Preisser, M. Gruenig, and M. Frenz, “Real-time clinical clutter reduction in combined epi-optoacoustic and ultrasound imaging,” Photonics & Lasers in Medicine (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The bimodal PA/US microscope which has been developed. (a) Schematic of the experimental setup. (b) Photograph of the upgraded scanning head. (c) Photograph of the optical fluence distribution on the surface of a piece of 80 g/m2 paper in air. (d) Sketch of the information contained in an A-scan indicating the sequence of TE, PA, and US signals.
Fig. 2
Fig. 2 The results of 2D bimodal PA/US visualization of a mouse tail in vivo, acquired with δx = 4 µm steps of the scanning head. (a) Schematic of the major blood vessels inside the mouse tail according to [34]. (b) Overlay of the PA and US B-scans.
Fig. 3
Fig. 3 Results of 3D bimodal PA/US visualization of newborn rat’s head in vivo acquired with δx = δy = 30 µm steps of the scanning head. PB – parietal bones, SS – skin surface, DSS – dorsal sagittal sinus.
Fig. 4
Fig. 4 Results of 3D bimodal PA/US visualization of a mouse tumor in vivo acquired with δx = δy = 30 µm steps of the scanning head. (a) Photograph of Colo26 tumor in vivo where the green square indicates the scanning range. (b) Photograph of dissected Colo26 tumor where the green square indicates the scanning range. (c) PA C-scan of the tumor. (d) US C-scan of the tumor. (e) PA B-scan of the tumor. (f) US B-scan of the tumor.

Metrics