Abstract

Dysfunction of the inner ear is the most common cause of sensorineural hearing loss, which is the most common sensory deficit worldwide. Conventional imaging modalities are unable to depict the microanatomy of the human inner ear, hence the need to explore novel imaging modalities. We provide the first characterization of the polarization dependent optical properties of human cochlear sections using quantitative polarized light microscopy (qPLM). Eight pediatric cadaveric cochlear sections, aged 0 (term) to 24 months, were selected from the US National Temporal Bone Registry, imaged with qPLM and analyzed using Image J. Retardance of the bony otic capsule and basilar membrane were substantially higher than that of the stria vascularis, spiral ganglion neurons, organ of Corti and spiral ligament across the half turns of the spiraling cochlea. qPLM provides quantitative information about the human inner ear, and awaits future exploration in vivo.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography

Simon S. Gao, Anping Xia, Tao Yuan, Patrick D. Raphael, Ryan L. Shelton, Brian E. Applegate, and John S. Oghalai
Opt. Express 19(16) 15415-15428 (2011)

Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging

Janani S. Iyer, Ning Zhu, Sergei Gasilov, Hanif M. Ladak, Sumit K. Agrawal, and Konstantina M. Stankovic
Biomed. Opt. Express 9(8) 3757-3767 (2018)

Imaging hair cells through laser-ablated cochlear bone

Marilisa Romito, Ye Pu, Konstantina M. Stankovic, and Demetri Psaltis
Biomed. Opt. Express 10(11) 5974-5988 (2019)

References

  • View by:
  • |
  • |
  • |

  1. National Institute on Deafness and Other Communication Disorders, “Quick Statistics” (2010).
  2. B. Traynor, “The incidence of hearing loss around the world,” Hearing International, < http://hearinghealthmatters.org/hearinginternational/2011/incidence-of-hearing-loss-around-the-world/ >.
  3. X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
    [Crossref] [PubMed]
  4. N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
    [Crossref] [PubMed]
  5. T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
    [Crossref] [PubMed]
  6. G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
    [Crossref] [PubMed]
  7. G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
    [Crossref] [PubMed]
  8. R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
    [Crossref] [PubMed]
  9. E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
    [Crossref] [PubMed]
  10. C. Herman, “Emerging technologies for the detection of melanoma: achieving better outcomes,” Clin Cosmet Investig Dermatol 5, 195–212 (2012).
    [Crossref] [PubMed]
  11. C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
    [Crossref] [PubMed]
  12. S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
    [Crossref] [PubMed]
  13. J. B. Nadol Jr and S. N. Merchant, Schuknecht’s Pathology of the Ear, 3rd ed., (McGraw-Hill Education UK).
  14. M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
    [Crossref] [PubMed]
  15. M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
    [Crossref] [PubMed]
  16. J. L. Wright and H. F. Schuknecht, “Atrophy of the spiral ligament,” Arch. Otolaryngol. 96(1), 16–21 (1972).
    [Crossref] [PubMed]
  17. T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
    [Crossref] [PubMed]
  18. Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
    [Crossref] [PubMed]
  19. M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
    [Crossref] [PubMed]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
  21. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  22. B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
    [Crossref] [PubMed]
  23. B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
    [Crossref] [PubMed]
  24. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
    [Crossref] [PubMed]
  25. S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
    [PubMed]
  26. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
    [Crossref] [PubMed]
  27. J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
    [Crossref] [PubMed]
  28. J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
    [Crossref] [PubMed]
  29. K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
    [Crossref] [PubMed]

2013 (3)

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

2012 (2)

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

C. Herman, “Emerging technologies for the detection of melanoma: achieving better outcomes,” Clin Cosmet Investig Dermatol 5, 195–212 (2012).
[Crossref] [PubMed]

2011 (1)

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

2010 (3)

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref] [PubMed]

2009 (1)

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

2007 (1)

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

2005 (1)

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

2004 (4)

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

2003 (2)

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
[Crossref] [PubMed]

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

2002 (1)

Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
[Crossref] [PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

2000 (1)

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

1995 (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

1993 (1)

T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

1984 (1)

M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
[Crossref] [PubMed]

1972 (1)

J. L. Wright and H. F. Schuknecht, “Atrophy of the spiral ligament,” Arch. Otolaryngol. 96(1), 16–21 (1972).
[Crossref] [PubMed]

Adams, J. C.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Adams, S. B.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Anderson, R. R.

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Anvari, B.

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Baba, K.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Bagnaninchi, P. O.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Bernstein, J. J.

Bonesi, M.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Brezinski, M. E.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Burgess, B. J.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Burns, J. A.

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref] [PubMed]

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Cagnazzo, C.

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

Chan, E. F.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Chen, A. C.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Chen, Z.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Chnari, E.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Choi, C. H.

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Collins, B.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Colvin, R.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Cureoglu, S.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Davila, V.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

de Boer, J. F.

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref] [PubMed]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

deBoer, J. F.

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

El Haj, A.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Evangelista, F.

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fujimoto, J. G.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Gregory, M. C.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Haward, S. J.

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Henson, M. M.

M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
[Crossref] [PubMed]

Henson, O. W.

M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
[Crossref] [PubMed]

Herman, C.

C. Herman, “Emerging technologies for the detection of melanoma: achieving better outcomes,” Clin Cosmet Investig Dermatol 5, 195–212 (2012).
[Crossref] [PubMed]

Hirose, K.

Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
[Crossref] [PubMed]

Hsieh, C. L.

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

Hsu, S. C.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Jenkins, D. B.

M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
[Crossref] [PubMed]

Kalwani, N. M.

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

Kariya, S.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kashtan, C. E.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Kim, K. H.

K. H. Kim, J. A. Burns, J. J. Bernstein, G. N. Maguluri, B. H. Park, and J. F. de Boer, “In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter,” Opt. Express 18(14), 14644–14653 (2010).
[Crossref] [PubMed]

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

Kobler, J. B.

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Kusunoki, T.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Liberman, M. C.

Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Lin, X.

T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
[Crossref] [PubMed]

Lopez-Guerra, G.

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

Lysaght, A. C.

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

Maffulli, G.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Maffulli, N.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Maguluri, G. N.

Martin, S. D.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Mazhar, A.

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

McKinley, G. H.

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

Meglinski, I.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Mei, G.

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Merchant, S. N.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Molinari, E.

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Nadol, J. B.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Nassif, N.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

Nelson, J. S.

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Nguyen-Huynh, A. T.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Nuttall, A. L.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
[Crossref] [PubMed]

Oghalai, J. S.

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Oldenbourg, R.

M. Shribak and R. Oldenbourg, “Techniques for fast and sensitive measurements of two-dimensional birefringence distributions,” Appl. Opt. 42(16), 3009–3017 (2003).
[Crossref] [PubMed]

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Ong, C. A.

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

Paparella, M. M.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Park, B. H.

Patel, N. A.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Phelan, C.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Pierce, M. C.

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Pikkula, B.

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Plummer, S.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Psaltis, D.

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

Pu, Y.

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Racca, C.

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

Raub, C. B.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Ren, T.

T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
[Crossref] [PubMed]

Revelli, A.

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

Roberts, M. J.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Sah, R. L.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Santi, P. A.

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

Schachern, P. A.

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

Schuknecht, H. F.

J. L. Wright and H. F. Schuknecht, “Atrophy of the spiral ligament,” Arch. Otolaryngol. 96(1), 16–21 (1972).
[Crossref] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Semler, E. J.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Shirazi, R.

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Shribak, M.

Stamper, D. L.

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

Stankovic, K. M.

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Subhash, H. M.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Sun, H.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Vitkin, I. A.

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

Vurgun, N.

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

Wallenburg, M. A.

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

Wang, R. K.

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
[Crossref] [PubMed]

Wenzel, G. I.

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Wong, B. J.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

Wood, M. F.

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

Wright, J. L.

J. L. Wright and H. F. Schuknecht, “Atrophy of the spiral ligament,” Arch. Otolaryngol. 96(1), 16–21 (1972).
[Crossref] [PubMed]

Yamaguchi, M.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

Yang, X.

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

Yang, Y.

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Zeitels, S. M.

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Zhao, Y.

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

Ann. Otol. Rhinol. Laryngol. (1)

J. A. Burns, S. M. Zeitels, R. R. Anderson, J. B. Kobler, M. C. Pierce, and J. F. de Boer, “Imaging the mucosa of the human vocal fold with optical coherence tomography,” Ann. Otol. Rhinol. Laryngol. 114(9), 671–676 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Otolaryngol. (1)

J. L. Wright and H. F. Schuknecht, “Atrophy of the spiral ligament,” Arch. Otolaryngol. 96(1), 16–21 (1972).
[Crossref] [PubMed]

Clin Cosmet Investig Dermatol (1)

C. Herman, “Emerging technologies for the detection of melanoma: achieving better outcomes,” Clin Cosmet Investig Dermatol 5, 195–212 (2012).
[Crossref] [PubMed]

Hear. Res. (1)

M. M. Henson, O. W. Henson, and D. B. Jenkins, “The attachment of the spiral ligament to the cochlear wall: anchoring cells and the creation of tension,” Hear. Res. 16(3), 231–242 (1984).
[Crossref] [PubMed]

Int. Orthop. (1)

S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “New technology for assessing microstructural components of tendons and ligaments,” Int. Orthop. 27(3), 184–189 (2003).
[PubMed]

J. Assist. Reprod. Genet. (1)

E. Molinari, F. Evangelista, C. Racca, C. Cagnazzo, and A. Revelli, “Polarized light microscopy-detectable structures of human oocytes and embryos are related to the likelihood of conception in IVF,” J. Assist. Reprod. Genet. 29(10), 1117–1122 (2012).
[Crossref] [PubMed]

J. Assoc. Res. Otolaryngol. (1)

Y. Wang, K. Hirose, and M. C. Liberman, “Dynamics of noise-induced cellular injury and repair in the mouse cochlea,” J. Assoc. Res. Otolaryngol. 3(3), 248–268 (2002).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

B. J. Wong, J. F. de Boer, B. H. Park, Z. Chen, and J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000).
[Crossref] [PubMed]

H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, and R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010).
[Crossref] [PubMed]

G. I. Wenzel, B. Anvari, A. Mazhar, B. Pikkula, and J. S. Oghalai, “Laser-induced collagen remodeling and deposition within the basilar membrane of the mouse cochlea,” J. Biomed. Opt. 12(2), 021007 (2007).
[Crossref] [PubMed]

X. Yang, Y. Pu, C. L. Hsieh, C. A. Ong, D. Psaltis, and K. M. Stankovic, “Two-photon microscopy of the mouse cochlea in situ for cellular diagnosis,” J. Biomed. Opt. 18(3), 031104 (2013).
[Crossref] [PubMed]

N. M. Kalwani, C. A. Ong, A. C. Lysaght, S. J. Haward, G. H. McKinley, and K. M. Stankovic, “Quantitative polarized light microscopy of unstained mammalian cochlear sections,” J. Biomed. Opt. 18(2), 026021 (2013).
[Crossref] [PubMed]

J. Microsc. (1)

R. Oldenbourg and G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180(2), 140–147 (1995).
[Crossref] [PubMed]

Laryngoscope (2)

S. N. Merchant, B. J. Burgess, J. C. Adams, C. E. Kashtan, M. C. Gregory, P. A. Santi, R. Colvin, B. Collins, and J. B. Nadol., “Temporal bone histopathology in alport syndrome,” Laryngoscope 114(9), 1609–1618 (2004).
[Crossref] [PubMed]

J. A. Burns, K. H. Kim, J. B. Kobler, J. F. deBoer, G. Lopez-Guerra, and S. M. Zeitels, “Real-time tracking of vocal fold injections with optical coherence tomography,” Laryngoscope 119(11), 2182–2186 (2009).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

G. I. Wenzel, B. Pikkula, C. H. Choi, B. Anvari, and J. S. Oghalai, “Laser irradiation of the guinea pig basilar membrane,” Lasers Surg. Med. 35(3), 174–180 (2004).
[Crossref] [PubMed]

Microvasc. Res. (1)

T. Ren, X. Lin, and A. L. Nuttall, “Polarized-light intravital microscopy for study of cochlear microcirculation,” Microvasc. Res. 46(3), 383–393 (1993).
[Crossref] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Osteoarthritis Cartilage (1)

C. B. Raub, S. C. Hsu, E. F. Chan, R. Shirazi, A. C. Chen, E. Chnari, E. J. Semler, and R. L. Sah, “Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer,” Osteoarthritis Cartilage 21(6), 860–868 (2013).
[Crossref] [PubMed]

Otolaryngol. Head Neck Surg. (2)

T. Kusunoki, S. Cureoglu, P. A. Schachern, K. Baba, S. Kariya, and M. M. Paparella, “Age-related histopathologic changes in the human cochlea: a temporal bone study,” Otolaryngol. Head Neck Surg. 131(6), 897–903 (2004).
[Crossref] [PubMed]

B. J. Wong, Y. Zhao, M. Yamaguchi, N. Nassif, Z. Chen, and J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 μm and 1.3 μm,” Otolaryngol. Head Neck Surg. 130(3), 334–338 (2004).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

M. F. Wood, N. Vurgun, M. A. Wallenburg, and I. A. Vitkin, “Effects of formalin fixation on tissue optical polarization properties,” Phys. Med. Biol. 56(8), N115–N122 (2011).
[Crossref] [PubMed]

P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol. 55(13), 3777–3787 (2010).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Other (3)

J. B. Nadol Jr and S. N. Merchant, Schuknecht’s Pathology of the Ear, 3rd ed., (McGraw-Hill Education UK).

National Institute on Deafness and Other Communication Disorders, “Quick Statistics” (2010).

B. Traynor, “The incidence of hearing loss around the world,” Hearing International, < http://hearinghealthmatters.org/hearinginternational/2011/incidence-of-hearing-loss-around-the-world/ >.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Pseudocolour retardance magnitude and (b) orientation image of a cross-section through the upper basal turn of a human cochlea. The colored bar in (a) indicates the scale for retardance magnitude from 0 to 4 nm. The colored circle in (b) indicates the correspondence between pixel colour and orientation of the slow axis. OtC = otic capsule; BM = basilar membrane; SV = stria vascularis; SGN = spiral ganglion neuron cell bodies; OC = organ of Corti; SL = spiral ligament. White scale bar: 500μm.
Fig. 2
Fig. 2 (a) Pseudocolour retardance magnitude and (b) orientation image of a cross-section through the lower basal turn of a human cochlea. The colored bar in (a) indicates the scale for retardance magnitude from 0 to 4 nm. The colored circle in (b) indicates the correspondence between pixel colour and orientation of the slow axis. OtC = otic capsule; BM = basilar membrane; SV = stria vascularis; SGN = spiral ganglion neuron cell bodies; OC = organ of Corti; SL = spiral ligament. White scale bar: 500 μm.
Fig. 3
Fig. 3 Image of a cross-section through the upper basal turn of a human cochlea (same as in Fig. 1) under simple light microscopy. White scale bar: 500 μm. OtC = otic capsule; BM = basilar membrane; SV = stria vascularis; SGN = spiral ganglion neuron cell bodies; OC = organ of Corti; SL = spiral ligament.
Fig. 4
Fig. 4 Retardance of cochlear structures along the cochlear length, from the lower basal to the upper middle turn. The horizontal axis is slightly shifted for each cochlear tissue to facilitate comparison. LB = lower basal; UB = upper basal; LM = lower middle; UM = upper middle.

Metrics