Abstract

Real-time intraocular optical coherence tomography (OCT) visualization of tissues with surgical feedback can enhance retinal surgery. An intraocular 23-gauge B-mode forward-imaging co-planar OCT-forceps, coupling connectors and algorithms were developed to form a unique ophthalmic surgical robotic system. Approach to the surface of a phantom or goat retina by a manual or robotic-controlled forceps, with and without real-time OCT guidance, was performed. Efficiency of lifting phantom membranes was examined. Placing the co-planar OCT imaging probe internal to the surgical tool reduced instrument shadowing and permitted constant tracking. Robotic assistance together with real-time OCT feedback improved depth perception accuracy. The first-generation integrated OCT-forceps was capable of peeling membrane phantoms despite smooth tips.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery

Cheol Song, Dong Yong Park, Peter L. Gehlbach, Seong Jin Park, and Jin U. Kang
Biomed. Opt. Express 4(7) 1045-1050 (2013)

Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers

Yuankai K. Tao, Sunil K. Srivastava, and Justis P. Ehlers
Biomed. Opt. Express 5(6) 1877-1885 (2014)

Miniature real-time intraoperative forward-imaging optical coherence tomography probe

Karen M. Joos and Jin-Hui Shen
Biomed. Opt. Express 4(8) 1342-1350 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
    [Crossref] [PubMed]
  2. S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
    [Crossref] [PubMed]
  3. J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
    [Crossref] [PubMed]
  4. J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
    [Crossref]
  5. A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
    [Crossref]
  6. C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
    [Crossref] [PubMed]
  7. C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
    [Crossref] [PubMed]
  8. J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
    [Crossref] [PubMed]
  9. P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
    [Crossref] [PubMed]
  10. Y.K. Tao, S.K. Srivastava, and J.P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
    [Crossref] [PubMed]
  11. J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
    [Crossref]
  12. J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
    [Crossref]
  13. M.F. Kraus, J.J. Liu, J. Schottenhamml, C.L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J.S. Duker, J.G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
    [Crossref] [PubMed]
  14. P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
    [Crossref]
  15. J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
    [Crossref]
  16. P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
    [Crossref] [PubMed]
  17. J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
    [Crossref]
  18. M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
    [Crossref]
  19. D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
    [Crossref] [PubMed]
  20. M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
    [Crossref]
  21. S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.
  22. C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided ”SMART” microforceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
    [Crossref] [PubMed]
  23. K.M. Joos and J.H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
    [Crossref] [PubMed]
  24. Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
    [Crossref] [PubMed]
  25. K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).
  26. H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
    [Crossref]
  27. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
    [Crossref]
  28. C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
    [Crossref]
  29. A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.
  30. B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
    [Crossref]
  31. T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
    [Crossref] [PubMed]
  32. W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).
  33. W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
    [Crossref]
  34. W. Wei and N. Simaan, “Modeling, force sensing, and control of flexible cannulas for microstent delivery,” J. Dynamic Syst., Measurement, Control 134(4), 041004 (2012).
    [Crossref]
  35. B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.
  36. Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
    [Crossref] [PubMed]
  37. X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
    [Crossref] [PubMed]
  38. X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).
  39. J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
    [Crossref] [PubMed]
  40. S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
    [Crossref] [PubMed]
  41. H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.
  42. M. N. Iyer and D. P. Han, “An eye model for practicing vitreoretinal membrane peeling,” Arch. Ophthalmol. 124(1), 108–110 (2006).
    [Crossref] [PubMed]
  43. J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
    [Crossref] [PubMed]
  44. Y. Huang and J.U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng. 51(7), 073203 (2012).
    [Crossref]

2014 (9)

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Y.K. Tao, S.K. Srivastava, and J.P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

M.F. Kraus, J.J. Liu, J. Schottenhamml, C.L. Chen, A. Budai, L. Branchini, T. Ko, H. Ishikawa, G. Wollstein, J. Schuman, J.S. Duker, J.G. Fujimoto, and J. Hornegger, “Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization,” Biomed. Opt. Express 5(8), 2591–2613 (2014).
[Crossref] [PubMed]

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

2013 (11)

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided ”SMART” microforceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

K.M. Joos and J.H. Shen, “Miniature real-time intraoperative forward-imaging optical coherence tomography probe,” Biomed. Opt. Express 4(8), 1342–1350 (2013).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

2012 (4)

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

W. Wei and N. Simaan, “Modeling, force sensing, and control of flexible cannulas for microstent delivery,” J. Dynamic Syst., Measurement, Control 134(4), 041004 (2012).
[Crossref]

Y. Huang and J.U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng. 51(7), 073203 (2012).
[Crossref]

2011 (3)

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

2010 (2)

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

2009 (3)

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

2006 (1)

M. N. Iyer and D. P. Han, “An eye model for practicing vitreoretinal membrane peeling,” Arch. Ophthalmol. 124(1), 108–110 (2006).
[Crossref] [PubMed]

2003 (1)

C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
[Crossref]

1999 (2)

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

1998 (1)

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

1996 (1)

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Almony, A.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Ang, W. T.

C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
[Crossref]

Arevalo, J.F.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Balicki, M.

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Barnes, A.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Becker, B. C.

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Berrocal, M.H.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Bettini, A.

A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.

Binder, S.

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Blinder, K.J.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Branchini, L.

Brandacher, G.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Brown, D.M.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Budai, A.

Carpentier, C.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Cha, J.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Chang, S.

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

Chen, C.L.

Cheon, G. W.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Chien, W.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Clifton, D.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Coker, J.G.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Colgate, E. J.

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

Croft, D.E.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Crouch, J.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Das, H.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Day, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Dayani, P.N.

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

deJuan, E.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Diaz-Llopis, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Duker, J.S.

Ehlers, J. P.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Ehlers, J.P.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

Y.K. Tao, S.K. Srivastava, and J.P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

Eliott, D.B.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Falkner-Radler, C.I.

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Farsiu, S.

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

Feiler, D.

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

Fekrat, S.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Filsecker, L.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Fine, H.

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

Fine, H. F.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

Fleming, A.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Frambach, D.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Fujimoto, J.G.

Gallego-Pinazo, R.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Gehlbach, P.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Gehlbach, P. L.

Gehlbach, P.L.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Glittenberg, C.

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Glucksberg, M.

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

Goldman, R. E.

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

Gonenc, B.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Grace, K. W.

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

Gupta, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Gurbani, S. S.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Hage, G.

A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.

Hager, G. D.

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Hahn, P.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Han, D. P.

M. N. Iyer and D. P. Han, “An eye model for practicing vitreoretinal membrane peeling,” Arch. Ophthalmol. 124(1), 108–110 (2006).
[Crossref] [PubMed]

Han, J. H.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Han, S.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Handa, J.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Handa, J. T.

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Hauger, C.

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

Hee, M.R.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Hornegger, J.

Huang, Y.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Y. Huang and J.U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng. 51(7), 073203 (2012).
[Crossref]

Ibrahim, Z.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Ida, Y.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

Ideta, R.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Iordachita, I.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Iordachita, I. I.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Ishikawa, H.

Iyer, M. N.

M. N. Iyer and D. P. Han, “An eye model for practicing vitreoretinal membrane peeling,” Arch. Ophthalmol. 124(1), 108–110 (2006).
[Crossref] [PubMed]

Izatt, J.A.

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Jensen, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

Johnson, J.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Joos, K. M.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.

Joos, K.M.

Jung, W.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kaiser, P. K.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Kaiser, P.K.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

Kang, J.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Kang, J. U.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

C. Song, D. Y. Park, P. L. Gehlbach, S. J. Park, and J. U. Kang, “Fiber-optic OCT sensor guided ”SMART” microforceps for microsurgery,” Biomed. Opt. Express 4(7), 1045–1050 (2013).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Kang, J.U.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Y. Huang and J.U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng. 51(7), 073203 (2012).
[Crossref]

Kavoussi, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Khosla, P. K.

C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
[Crossref]

Kim, C.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kim, H.K.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kim, J.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kim, K.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kim, S.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Kiss, S.

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

Ko, T.

Kozub, J. A.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Kraus, M.F.

Kumar, R.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Kuo, A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Lang, S.

A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.

Lee, A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Lee, C.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Lee, J.H.

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

Lee, W.P.A.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Li, Z.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Lin, P.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Liu, J.J.

Liu, X.

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Lobes, L. A.

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Lu, P.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Maclachlan, R. A.

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Maia, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Maldonado, R.

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

Maldonado, R.S.

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Martin, D.F.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Matz, H.

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

McNutt, S.A.

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

Migacz, J.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Milan-Navarro, R.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Mitsuishi, M.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Mittra, R.A.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Mochizuki, R.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Morita, A.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Mruthyunjaya, P.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Nakano, T.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Niparko, J. K.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Noda, Y.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Noonan, A.I.

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

Nudleman, E.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

O’Connell, R.

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

O’Donnell, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Ohr, M. P.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Okamura, A.

A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.

Park, D. Y.

Park, S. J.

Parlitsis, G.

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

Patel, S.

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

Popplewell, C.

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

Postel, E.A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Prasad, R.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Puliafito, C.A.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Reichel, E.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Riviere, C. M.

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Riviere, C. N.

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
[Crossref]

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Roggia, M.F.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

Rollins AM, A.M.

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

Saravia, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Schottenhamml, J.

Schuman, J.

Schuman, J.S.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Sepulveda, G.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Shah, G.K.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Shen, J. H.

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Shen, J.H.

Shen, J.-H.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.

Shirakawa, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Simaan, N.

W. Wei and N. Simaan, “Modeling, force sensing, and control of flexible cannulas for microstent delivery,” J. Dynamic Syst., Measurement, Control 134(4), 041004 (2012).
[Crossref]

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.

Singh, R.P.

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

Smith, G.M.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Song, C.

Srivastava, S. K.

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Srivastava, S.K.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

Y.K. Tao, S.K. Srivastava, and J.P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

Stoianovici, D.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Sugita, N.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Swanson, E.A.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Tam, T.

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

Tamaki, Y.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Tanaka, S.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

Tao, Y.K.

Y.K. Tao, S.K. Srivastava, and J.P. Ehlers, “Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers,” Biomed. Opt. Express 5(6), 1877–1885 (2014).
[Crossref] [PubMed]

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

Taylor, R.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

Taylor, R. H.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Towards automatic calibration of Fourier-domain OCT for robot-assisted vitreoretinal surgery,” Opt. Express 18(23), 24331–24343 (2010).
[Crossref] [PubMed]

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Tewari, A.

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

Toth, C.A.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

Toyama, T.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

Ueta, T.

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Van Hemert, J.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Vann, R.

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

Verdaguer-Diaz, J.I.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Verhoek, M.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Voros, S.

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

Wang, Z.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Wei, W.

W. Wei and N. Simaan, “Modeling, force sensing, and control of flexible cannulas for microstent delivery,” J. Dynamic Syst., Measurement, Control 134(4), 041004 (2012).
[Crossref]

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

Whitcomb, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

Wilkening, P.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Wilkins, J.R.

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Witmer, M.T.

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

Wollstein, G.

Wu, L.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Wykoff, C.C.

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Xu, D.

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

Yamaguchi, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

Yang, S. W.

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

Yu, H.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.

Zak, H.

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Zanolli, M.

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

Zhang, K.

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

Zhao, M.

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

Arch. Ophthalmol. (1)

M. N. Iyer and D. P. Han, “An eye model for practicing vitreoretinal membrane peeling,” Arch. Ophthalmol. 124(1), 108–110 (2006).
[Crossref] [PubMed]

ASME J. Med. Devices (1)

W. Wei, C. Popplewell, H. Fine, S. Chang, and N. Simaan, “Enabling technology for micro-vascular stenting in ophthalmic surgery,” ASME J. Med. Devices 4(2), 014503 (2010).
[Crossref]

Automatica (1)

K. W. Grace, P. Jensen, E. J. Colgate, and M. Glucksberg, “Teleoperation for ophthalmic surgery: From the Eye Robot to feature extracting force feedback,” Automatica 16(4),293–310 (1998).

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (1)

J.P. Ehlers, S.A. McNutt, P.K. Kaiser, and S.K. Srivastava, “Contrast-enhanced intraoperative optical coherence tomography,” Br. J. Ophthalmol. 97(11), 1384–1386 (2013).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

M.T. Witmer, G. Parlitsis, S. Patel, and S. Kiss, “Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®),” Clin. Ophthalmol. 7, 389–394 (2013).
[Crossref]

Computer Aided Surg. (1)

H. Das, H. Zak, J. Johnson, J. Crouch, and D. Frambach, “Evaluation of a telerobotic system to assist surgeons in microsurgery,” Computer Aided Surg. 4(1), 15–25 (1999).
[Crossref]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

P. Hahn, J. Migacz, R. O’Connell, J.A. Izatt, and C.A. Toth, “Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system,” Graefes Arch. Clin. Exp. Ophthalmol. 251(1), 213–220 (2013).
[Crossref]

IEEE Trans. Robotics (1)

B. C. Becker, R. A. Maclachlan, L. A. Lobes, G. D. Hager, and C. N. Riviere, “Vision-based control of a handheld surgical micromanipulator with virtual fixtures,” IEEE Trans. Robotics 29(3), 674–683 (2013).
[Crossref]

IEEE Trans. Robotics Automation (1)

C. N. Riviere, W. T. Ang, and P. K. Khosla, “Toward active tremor canceling in handheld microsurgical instruments,” IEEE Trans. Robotics Automation 19(5), 793–800 (2003).
[Crossref]

Int. J. Robotics Res. (1)

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. deJuan, and L. Kavoussi, “Steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18(12), 1201–1210 (1999).
[Crossref]

J. Biomed. Opt. (3)

C. Lee, K. Kim, S. Han, S. Kim, J.H. Lee, H.K. Kim, C. Kim, W. Jung, and J. Kim, “Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography,” J. Biomed. Opt. 19(3), 30502 (2014).
[Crossref] [PubMed]

J.U. Kang, Y. Huang, K. Zhang, Z. Ibrahim, J. Cha, W.P.A. Lee, G. Brandacher, and P.L. Gehlbach, “Realtime three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries,” J. Biomed. Opt. 17(8), 081403 (2012).
[Crossref]

S. S. Gurbani, P. Wilkening, M. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. Chien, R. H. Taylor, J. K. Niparko, and J. U. Kang, “Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe,” J. Biomed. Opt. 19(5), 057004 (2014).
[Crossref] [PubMed]

J. Dynamic Syst., Measurement, Control (1)

W. Wei and N. Simaan, “Modeling, force sensing, and control of flexible cannulas for microstent delivery,” J. Dynamic Syst., Measurement, Control 134(4), 041004 (2012).
[Crossref]

Lasers Surg. Med. (1)

Z. Li, J. H. Shen, J. A. Kozub, R. Prasad, P. Lu, and K. M. Joos, “Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation,” Lasers Surg. Med. 46(3), 193–202 (2014).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging (1)

P. Hahn, J. Migacz, R. O’Connell, R.S. Maldonado, J.A. Izatt, and C.A. Toth, “The use of optical coherence tomography in intraoperative ophthalmic imaging,” Ophthalmic Surg. Lasers Imaging 42(Suppl), S85–S94 (2011).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (1)

D.E. Croft, J. Van Hemert, C.C. Wykoff, D. Clifton, M. Verhoek, A. Fleming, and D.M. Brown, “Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography,” Ophthalmic Surg. Lasers Imaging Retina 45(4), 312–317 (2014).
[Crossref] [PubMed]

Ophthalmol. Vis. Sci. (1)

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest”, Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011).
[Crossref]

Ophthalmology (2)

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-assisted vitreoretinal surgery: development of a prototype and feasibility studies in an animal model,” Ophthalmology 116(8), 1538–1543 (2009).
[Crossref] [PubMed]

J.R. Wilkins, C.A. Puliafito, M.R. Hee, J.S. Duker, E. Reichel, J.G. Coker, J.S. Schuman, E.A. Swanson, and J.G. Fujimoto, “Characterization of epiretinal membranes using optical coherence tomography,” Ophthalmology 103(12), 2142–2151 (1996).
[Crossref] [PubMed]

Opt. Eng. (1)

Y. Huang and J.U. Kang, “Real-time reference A-line subtraction and saturation artifact removal using graphics processing unit for high-frame-rate Fourier-domain optical coherence tomography video imaging,” Opt. Eng. 51(7), 073203 (2012).
[Crossref]

Opt. Express (1)

PLoS One (2)

Y. Noda, Y. Ida, S. Tanaka, T. Toyama, M.F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta, “Impact of robotic assistance on precision of vitreoretinal surgical procedures,” PLoS One 8(1), e54116 (2013).
[Crossref] [PubMed]

J.P. Ehlers, S.K. Srivastava, D. Feiler, A.I. Noonan, A.M. Rollins AM, and Y.K. Tao, “Integrative advances for OCT-guided ophthalmic surgery and intraoperative OCT: microscope integration, surgical instrumentation, and heads-up display surgeon feedback,” PLoS One 9(8), e105224 (2014).
[Crossref]

Retina (9)

P. Hahn, J. Migacz, R. O’Donnell, S. Day, A. Lee, P. Lin, R. Vann, A. Kuo, S. Fekrat, P. Mruthyunjaya, E.A. Postel, J.A. Izatt, and C.A. Toth, “Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device,” Retina 33(7), 1328–1337 (2013).
[Crossref] [PubMed]

P.N. Dayani, R. Maldonado, S. Farsiu, and C.A. Toth, “Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery,” Retina 29(10), 1457–1468 (2009).
[Crossref] [PubMed]

S. Binder, C.I. Falkner-Radler, C. Hauger, H. Matz, and C. Glittenberg, “Feasibility of intrasurgical spectral-domain optical coherence tomography,” Retina 31(7), 1332–1336 (2011).
[Crossref] [PubMed]

J.P. Ehlers, T. Tam, P.K. Kaiser, D.F. Martin, G.M. Smith, and S.K. Srivastava, “Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome,” Retina 34(7), 1341–1346 (2014).
[Crossref] [PubMed]

J.P. Ehlers, D. Xu, P.K. Kaiser, R.P. Singh, and S.K. Srivastava, “Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography,” Retina 34(2), 213–221 (2014).
[Crossref]

A. Almony, E. Nudleman, G.K. Shah, K.J. Blinder, D.B. Eliott, R.A. Mittra, and A. Tewari, “Techniques, rationale, and outcomes of internal limiting membrane peeling,” Retina 32(5), 877–891 (2012).
[Crossref]

C. Carpentier, M. Zanolli, L. Wu, G. Sepulveda, M.H. Berrocal, M. Saravia, M. Diaz-Llopis, R. Gallego-Pinazo, L. Filsecker, J.I. Verdaguer-Diaz, R. Milan-Navarro, J.F. Arevalo, and M. Maia, “Residual internal limiting membrane after epiretinal membrane peeling: results of the Pan-American Collaborative Retina Study Group,” Retina 33(10), 2026–2031 (2013).
[Crossref] [PubMed]

J.P. Ehlers, Y.K. Tao, S. Farsiu, R. Maldonado, J.A. Izatt, and C.A. Toth, “Visualization of real-time intraoperative maneuvers with a microscope-mounted spectral domain optical coherence tomography system,” Retina 33(1), 232–236 (2013).
[Crossref]

J. P. Ehlers, M. P. Ohr, P. K. Kaiser, and S. K. Srivastava, “Novel microarchitectural dynamics in rhegmatogenous retinal detachments identified with intraoperative optical coherence tomography,” Retina 33(7), 1428–1434 (2013).
[Crossref] [PubMed]

Robotics (1)

W. Wei, R. E. Goldman, H. F. Fine, S. Chang, and N. Simaan, “Performance evaluation for multi-arm manipulation of hollow suspended organs,” IEEE Trans”, Robotics 25(1), 147–157 (2009).

Other (6)

B. C. Becker, S. Voros, L. A. Lobes, J. T. Handa, G. D. Hager, and C. N. Riviere, “Retinal vessel cannulation with an image-guided handheld robot,” in), Proceeding of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2010), pp. 5420–5423.

X. Liu, M. Balicki, R. H. Taylor, and J. U. Kang, “Automatic online spectral calibration of Fourier-domain OCT for robotic surgery,” Proc SPIE7890, (2011).

A. Bettini, S. Lang, A. Okamura, and G. Hage, “Vision assisted control for manipulation using virtual fixtures: experiments at macro and micro scales,” in), Proceedings of 2002 IEEE International Conference on Robotics and Automation, (IEEE, 2002), pp. 3354–3361.

M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, and J. Kang, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” in Medical Image Computing and Computer-Assisted Intervention MICCAI 2009, G-Z. Yang, D.R. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds., (Springer, 2009), pp. 108–115.
[Crossref]

S. W. Yang, M. Balicki, R. A. MacLachlan, X. Liu, J. U. Kang, R. H. Taylor, and C. M. Riviere, “Optical coherence tomography scanning with a handheld vitreoretinal micromanipulator,” in), Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEEE, 2012), pp. 948–951.

H. Yu, J.-H. Shen, K. M. Joos, and N. Simaan, “Design, calibration and preliminary testing of a robotic telemanipulator for OCT guided retinal surgery,” in), Proceedings of IEEE International Conference on Robotics and Automation, (IEEE2013), pp. 225–231.

Supplementary Material (10)

» Media 1: MP4 (6252 KB)     
» Media 2: MP4 (1160 KB)     
» Media 3: MP4 (2339 KB)     
» Media 4: MP4 (1208 KB)     
» Media 5: MP4 (728 KB)     
» Media 6: MP4 (7645 KB)     
» Media 7: MP4 (2493 KB)     
» Media 8: MP4 (8473 KB)     
» Media 9: MP4 (6560 KB)     
» Media 10: MP4 (7985 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

OCT-forceps probe design with OCT images of the probe’s tips. (a) Drawing of the OCT-forceps probe design with an internal 0.51 mm diameter (25-gauge) stainless steel tube (SST) with embedded scanning OCT fiber optic and a gripper cut in the front portion. An external 23-gauge SST slides to open/close the forceps. The OCT beam scans through both tips of the forceps. (b) An external manual hand piece actuator causes the external 23-gauge SST tube to slide which opens/closes the forceps. (c) The unprocessed OCT image appearance of the forceps’ tips is illustrated with real-time OCT imaging of the forceps’ tips closing and opening demonstrated ( Media 1).

Fig. 2
Fig. 2

Diagram and images of a cellophane tape roll for different OCT tilts. (a) Diagram of a positive angle θ tilt from the normal direction. (b) Images produced when tilting longitudinally to the OCT scanning beam in (+) angle θ direction according to the right hand rule about the probe tilting axis. (c) Images produced when tilting in (−) θ direction according to the right hand rule about the probe tilting axis.

Fig. 3
Fig. 3

Robotic design and layout. (a) A 7 Degree of Freedom (DOF) robot was used in this experiment with 6 DOF parallel robot and 1 DOF gripper. (b) The 6 DOF parallel robot also controlled the OCT-forceps probe. (c) Demonstration of the remote center of motion (RCM) located at the sclerotomy in the phantom model eye.

Fig. 4
Fig. 4

Experimental layout for manual and robot-assisted tasks. (a) For manual manipulation, the surgeon held an ophthalmic forceps or B-scan OCT-forceps and manipulated the forceps through a mockup sclerotomy constraint above the gelatin retinal phantom. (b) For robotic manipulation, the surgeon held the robot master device and controlled the slave robot to manipulate a customized ophthalmic forceps. (c) Layout with a small side-view OCT screen to improve visualization of real-time OCT feedback.

Fig. 5
Fig. 5

(a–c) The OCT probe with approximately 2mm scan length is capable of imaging retina through vitreous in an intact cadaver goat eye. (d–f) Ex vivo goat retina was used to enable application of artificial membranes. Nonuniform (d) tight adherence, (e) loose adherence, or (f) retinal contraction developed. Scale bars indicate the length of the images.

Fig. 6
Fig. 6

Side-view image segmentation examples of the lowest point in one approaching attempt for each experimental condition. The red outline determined the lowest point of the gripper and the blue outline located the highest point of the reflected gripper. (a) through (j) are correlated with experiments (A) through (J). Corresponding videos are presented for the (a) manual forceps touching gelatin ( Media 2), (b) robot-assisted forceps touching gelatin ( Media 3), (h) manual OCT-forceps touching retina ( Media 4), and (i) robot-assisted OCT-forceps touching retina ( Media 5). (k, l) Examples of approaching(red) and retraction(blue) paths of the forceps’ tips motion with (k) manual control ( Media 2) and (l) robot-assisted control ( Media 3) with obvious reduction in lateral movement with robot-assisted control.

Fig. 7
Fig. 7

Real-time B-scan OCT imaging examples for the OCT-guided conditions. (a) Manual B-scan OCT-forceps approaching gelatin phantom ( Media 6). (b) Robot-assisted B-scan OCT-forceps approaching gelatin phantom ( Media 7). (c) Manual B-scan OCT-forceps approaching goat ex vivo retina ( Media 8). (d) Robot-assisted B-scan OCT-forceps approaching goat ex vivo retina ( Media 9). (e) Real-time B-scan OCT imaging of peeling membrane phantom from gelatin ( Media 10)

Fig. 8
Fig. 8

Sid-view images of successful membrane phantom peelings from the gelatin surface. (a) Condition (K) using the manual surgical forceps. (b) Condition (L) using the robot-assisted forceps. (c) Condition (M) using the manual B-scan OCT-forceps with OCT-image side screen.

Fig. 9
Fig. 9

Averages and standard deviations of the data with significantly different groups marked with * (p < 0.05). The x-axis labels the experimental condition as described in Table 1. The y-axis indicates the means and standard deviations of the measurements. (a) The approaching task to the gelatin phantom model (A to E); (b) The approaching task to the ex vivo goat retina (F to J); (c) The membrane peeling task on the gelatin phantom model (K to M).

Tables (4)

Tables Icon

Table 1 Experimental models and conditions used.

Tables Icon

Table 2 Results of approaching task on gelatin phantom model. M. = Manual; R. = Robotic; O. = OCT feedback; S.S. = Small Screen; S.D. = Standard Deviation

Tables Icon

Table 3 Results of approaching task on ex vivo retina. M. = Manual; R. = Robotic; O. = OCT feedback; S.S. = Small Screen; S.D. = Standard Deviation.

Tables Icon

Table 4 Results of membrane peeling task of liquid bandage on gelatin phantom. M. = Manual; R. = Robotic; O. = OCT feedback; S.S. = Small Screen; S.D. = Standard Deviation.

Metrics