Abstract

Custom Spectral Domain Optical Coherence Tomography (SD-OCT) provided with automatic quantification and distortion correction algorithms was used to measure anterior and posterior crystalline lens surface elevation in accommodating eyes and to evaluate relationships between anterior segment surfaces. Nine young eyes were measured at different accommodative demands. Anterior and posterior lens radii of curvature decreased at a rate of 0.78 ± 0.18 and 0.13 ± 0.07 mm/D, anterior chamber depth decreased at 0.04 ± 0.01 mm/D and lens thickness increased at 0.04 ± 0.01 mm/D with accommodation. Three-dimensional surface elevations were estimated by subtracting best fitting spheres. In the relaxed state, the spherical term accounted for most of the surface irregularity in the anterior lens (47%) and astigmatism (70%) in the posterior lens. However, in accommodated lenses astigmatism was the predominant surface irregularity (90%) in the anterior lens. The RMS of high-order irregularities of the posterior lens surface was statistically significantly higher than that of the anterior lens surface (x2.02, p<0.0001). There was significant negative correlation in vertical coma (Z3−1) and oblique trefoil (Z3−3) between lens surfaces. The astigmatic angle showed high degree of alignment between corneal surfaces, moderate between corneal and anterior lens surface (~27 deg), but differed by ~80 deg between the anterior and posterior lens surfaces (including relative anterior/posterior lens astigmatic angle shifts (10-20 deg) with accommodation).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
OCT 3-D surface topography of isolated human crystalline lenses

Mengchan Sun, Judith Birkenfeld, Alberto de Castro, Sergio Ortiz, and Susana Marcos
Biomed. Opt. Express 5(10) 3547-3561 (2014)

Three-dimensional OCT based guinea pig eye model: relating morphology and optics

Pablo Pérez-Merino, Miriam Velasco-Ocana, Eduardo Martinez-Enriquez, Luis Revuelta, Sally A McFadden, and Susana Marcos
Biomed. Opt. Express 8(4) 2173-2184 (2017)

Full 3-D OCT-based pseudophakic custom computer eye model

M. Sun, P. Pérez-Merino, E. Martinez-Enriquez, M. Velasco-Ocana, and S. Marcos
Biomed. Opt. Express 7(3) 1074-1088 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. N. Charman, “Physiological optics in 2008: standing on Helmholtz’s shoulders,” Ophthalmic Physiol. Opt. 29(3), 209–210 (2009).
    [Crossref] [PubMed]
  2. G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
    [Crossref] [PubMed]
  3. L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt. 17(1), 75–80 (1997).
    [Crossref] [PubMed]
  4. G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
    [Crossref] [PubMed]
  5. D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
    [Crossref] [PubMed]
  6. N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
    [Crossref] [PubMed]
  7. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [Crossref] [PubMed]
  8. J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
    [Crossref] [PubMed]
  9. E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
    [Crossref] [PubMed]
  10. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
    [Crossref] [PubMed]
  11. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
    [Crossref] [PubMed]
  12. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
    [Crossref] [PubMed]
  13. P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
    [Crossref] [PubMed]
  14. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
    [Crossref] [PubMed]
  15. J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
    [Crossref] [PubMed]
  16. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [Crossref] [PubMed]
  17. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
    [Crossref] [PubMed]
  18. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
    [Crossref] [PubMed]
  19. A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
    [Crossref] [PubMed]
  20. L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
    [Crossref] [PubMed]
  21. J. C. He and J. Wang, “Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system,” Opt. Express 22(8), 9764–9773 (2014).
    [Crossref] [PubMed]
  22. J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
    [Crossref] [PubMed]
  23. A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
    [Crossref] [PubMed]
  24. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
    [Crossref] [PubMed]
  25. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
    [Crossref] [PubMed]
  26. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  27. S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
    [Crossref] [PubMed]
  28. S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
    [Crossref] [PubMed]
  29. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [Crossref] [PubMed]
  30. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
    [Crossref] [PubMed]
  31. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
    [Crossref] [PubMed]
  32. S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [Crossref] [PubMed]
  33. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
    [Crossref] [PubMed]
  34. P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
    [Crossref] [PubMed]
  35. E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
    [Crossref] [PubMed]
  36. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
    [Crossref] [PubMed]
  37. T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
    [Crossref] [PubMed]
  38. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express 2(9), 2709–2720 (2011).
    [Crossref] [PubMed]
  39. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010).
    [Crossref] [PubMed]
  40. P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
    [Crossref] [PubMed]
  41. P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
    [Crossref] [PubMed]
  42. M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
    [Crossref] [PubMed]
  43. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
    [Crossref] [PubMed]
  44. T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
    [Crossref] [PubMed]
  45. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
    [Crossref] [PubMed]
  46. M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).
  47. M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
    [Crossref] [PubMed]
  48. L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
    [Crossref] [PubMed]
  49. A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
    [Crossref] [PubMed]
  50. J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
    [Crossref] [PubMed]
  51. P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

2015 (1)

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

2014 (5)

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

J. C. He and J. Wang, “Measurement of wavefront aberrations and lens deformation in the accommodated eye with optical coherence tomography-equipped wavefront system,” Opt. Express 22(8), 9764–9773 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

2013 (5)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (4)

2009 (5)

2008 (2)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

2007 (1)

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).

2006 (3)

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

2004 (3)

J. E. Koretz, S. A. Strenk, L. M. Strenk, and J. L. Semmlow, “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study,” J. Opt. Soc. Am. A 21(3), 346–354 (2004).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

2003 (1)

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

2000 (1)

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

1998 (2)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
[Crossref] [PubMed]

1997 (3)

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref] [PubMed]

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt. 17(1), 75–80 (1997).
[Crossref] [PubMed]

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

1996 (3)

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
[Crossref] [PubMed]

G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
[Crossref] [PubMed]

1995 (1)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

1993 (1)

D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
[Crossref] [PubMed]

1991 (1)

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
[Crossref] [PubMed]

1988 (1)

T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
[Crossref] [PubMed]

Alejandre, N.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

Arrieta, E.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Artal, P.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
[Crossref] [PubMed]

Atchison, D. A.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
[Crossref] [PubMed]

Barnes, D. A.

M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
[Crossref] [PubMed]

Berrio, E.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

Birkenfeld, J.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Burns, S. A.

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Carney, L. G.

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

Charman, W. N.

W. N. Charman, “Physiological optics in 2008: standing on Helmholtz’s shoulders,” Ophthalmic Physiol. Opt. 29(3), 209–210 (2009).
[Crossref] [PubMed]

Chen, Q.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Chia, N.

Ciuffreda, K. J.

G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
[Crossref] [PubMed]

Collins, M. J.

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

Davis, B. A.

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

de Castro, A.

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

De Freitas, C.

Dubbelman, M.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

Dunne, M. C.

M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
[Crossref] [PubMed]

Durán, S.

Elawad, M. E.

M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
[Crossref] [PubMed]

Gambra, E.

Gandolfi, S. A.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

Garner, L. F.

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt. 17(1), 75–80 (1997).
[Crossref] [PubMed]

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

Gasser, W.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

Glasser, A.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

Gora, M.

Gorczynska, I.

Grosvenor, T.

T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
[Crossref] [PubMed]

Grulkowski, I.

Guirao, A.

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

He, J. C.

Ho, A.

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Hung, G. K.

G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
[Crossref] [PubMed]

Iglesias, I.

N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
[Crossref] [PubMed]

Izatt, J. A.

Jiménez-Alfaro, I.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kasthurirangan, S.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Keller, P. R.

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Kenmore, T.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

Koretz, J. E.

Kowalczyk, A.

Kruger, P. B.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
[Crossref] [PubMed]

D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
[Crossref] [PubMed]

Kuo, A. N.

Leaci, R.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

Leng, L.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Liang, J.

Lin, B.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

López-Gil, N.

N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
[Crossref] [PubMed]

Lu, F.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Ma, Q.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Macaluso, C.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

Maceo, B.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

Manns, F.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Marcos, S.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
[Crossref] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Mathews, S.

D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
[Crossref] [PubMed]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

Neri, A.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

Ortiz, S.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, L. Remon, and S. Marcos, “Three-dimensional ray tracing on Delaunay-based reconstructed surfaces,” Appl. Opt. 48(20), 3886–3893 (2009).
[Crossref] [PubMed]

Parel, J. M.

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Pascual, D.

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
[Crossref] [PubMed]

Perez-Merino, P.

Pérez-Merino, P.

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

Perrigin, D. M.

T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
[Crossref] [PubMed]

Piers, P.

Pierscionek, B. K.

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
[Crossref] [PubMed]

Pope, J. M.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

Protti, A.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

Qu, J.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Quintero, S.

T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
[Crossref] [PubMed]

Remon, L.

Roorda, A.

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

P. Rosales and S. Marcos, “Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements,” J. Opt. Soc. Am. A 23(3), 509–520 (2006).
[Crossref] [PubMed]

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

Rosenfield, M.

G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
[Crossref] [PubMed]

Ruggeri, M.

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

Salmon, T. O.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

Semmlow, J. L.

Shen, M.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Sicam, V. A.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[Crossref] [PubMed]

Siedlecki, D.

Smith, G.

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
[Crossref] [PubMed]

Stone, D.

D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
[Crossref] [PubMed]

Strenk, L. M.

Strenk, S. A.

Sun, M.

Szkulmowski, M.

Szlag, D.

Uhlhorn, S. R.

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[Crossref] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

van der Heijde, R.

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

van der Heijde, R. G.

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).

van Saarloos, P. P.

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

Velasco-Ocana, M.

Wang, J.

Wang, Y.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
[Crossref] [PubMed]

Wendt, M.

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

West, R. W.

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

Williams, D. R.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref] [PubMed]

Wojtkowski, M.

Yuan, J.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
[Crossref] [PubMed]

Yuan, Y.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Zhao, M.

Zhu, D.

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Acta Ophthalmol. Scand. (1)

M. C. Dunne, M. E. Elawad, and D. A. Barnes, “Measurement of astigmatism arising from the internal ocular surfaces,” Acta Ophthalmol. Scand. 74(1), 14–20 (1996).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

P. Pérez-Merino, S. Ortiz, N. Alejandre, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Ocular and optical coherence tomography-based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments,” Am. J. Ophthalmol. 157(1), 116–127 (2014).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

T. Grosvenor, S. Quintero, and D. M. Perrigin, “Predicting refractive astigmatism: a suggested simplification of Javal’s rule,” Am. J. Optom. Physiol. Opt. 65(4), 292–297 (1988).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (7)

S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express 2(12), 3232–3247 (2011).
[Crossref] [PubMed]

E. Gambra, S. Ortiz, P. Perez-Merino, M. Gora, M. Wojtkowski, and S. Marcos, “Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT,” Biomed. Opt. Express 4(9), 1595–1609 (2013).
[Crossref] [PubMed]

K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express 2(9), 2709–2720 (2011).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, S. Durán, M. Velasco-Ocana, J. Birkenfeld, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Full OCT anterior segment biometry: an application in cataract surgery,” Biomed. Opt. Express 4(3), 387–396 (2013).
[Crossref] [PubMed]

S. Ortiz, P. Pérez-Merino, E. Gambra, A. de Castro, and S. Marcos, “In vivo human crystalline lens topography,” Biomed. Opt. Express 3(10), 2471–2488 (2012).
[Crossref] [PubMed]

M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J. M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express 3(7), 1506–1520 (2012).
[Crossref] [PubMed]

M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, and S. Marcos, “OCT 3-D surface topography of isolated human crystalline lenses,” Biomed. Opt. Express 5(10), 3547–3561 (2014).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (3)

A. de Castro, J. Birkenfeld, B. Maceo, F. Manns, E. Arrieta, J. M. Parel, and S. Marcos, “Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses,” Invest. Ophthalmol. Vis. Sci. 54(9), 6197–6207 (2013).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, and S. Marcos, “Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses,” Invest. Ophthalmol. Vis. Sci. 55(4), 2599–2607 (2014).
[Crossref] [PubMed]

P. Pérez-Merino, S. Ortiz, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Quantitative OCT-based longitudinal evaluation of intracorneal ring segment implantation in keratoconus,” Invest. Ophthalmol. Vis. Sci. 54(9), 6040–6051 (2013).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (1)

A. Neri, M. Ruggeri, A. Protti, R. Leaci, S. A. Gandolfi, and C. Macaluso, “Dynamic imaging of accommodation by swept-source anterior segment optical coherence tomography,” J. Cataract Refract. Surg. 41(3), 501–510 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (1)

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009).
[Crossref] [PubMed]

J. Vis. (7)

P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 1057–1067 (2006).
[Crossref] [PubMed]

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “MRI study of the changes in crystalline lens shape with accommodation and aging in humans,” J. Vis. 11(3), 19 (2011).
[Crossref] [PubMed]

A. Roorda and A. Glasser, “Wave aberrations of the isolated crystalline lens,” J. Vis. 4(4), 250–261 (2004).
[Crossref] [PubMed]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1(1), 1–8 (2001).
[Crossref] [PubMed]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004).
[Crossref] [PubMed]

M. Dubbelman, V. A. Sicam, and R. G. van der Heijde, “The contribution of the posterior surface to the coma aberration of the human cornea,” J. Vis. 7(10), 11–18 (2007).

P. Rosales, M. Wendt, S. Marcos, and A. Glasser, “Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys,” J. Vis. 8(18), 11–12 (2008).

Ophthalmic Physiol. Opt. (6)

D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995).
[Crossref] [PubMed]

W. N. Charman, “Physiological optics in 2008: standing on Helmholtz’s shoulders,” Ophthalmic Physiol. Opt. 29(3), 209–210 (2009).
[Crossref] [PubMed]

G. Smith, B. K. Pierscionek, and D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11(4), 359–369 (1991).
[Crossref] [PubMed]

L. F. Garner, “Calculation of the radii of curvature of the crystalline lens surfaces,” Ophthalmic Physiol. Opt. 17(1), 75–80 (1997).
[Crossref] [PubMed]

G. K. Hung, K. J. Ciuffreda, and M. Rosenfield, “Proximal contribution to a linear static model of accommodation and vergence,” Ophthalmic Physiol. Opt. 16(1), 31–41 (1996).
[Crossref] [PubMed]

D. Stone, S. Mathews, and P. B. Kruger, “Accommodation and chromatic aberration: effect of spatial frequency,” Ophthalmic Physiol. Opt. 13(3), 244–252 (1993).
[Crossref] [PubMed]

Opt. Express (5)

Optom. Vis. Sci. (3)

L. F. Garner and G. Smith, “Changes in equivalent and gradient refractive index of the crystalline lens with accommodation,” Optom. Vis. Sci. 74(2), 114–119 (1997).
[Crossref] [PubMed]

T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, “Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(1), 6–14 (2003).
[Crossref] [PubMed]

P. R. Keller, M. J. Collins, L. G. Carney, B. A. Davis, and P. P. van Saarloos, “The relation between corneal and total astigmatism,” Optom. Vis. Sci. 73(2), 86–91 (1996).
[Crossref] [PubMed]

PLoS One (1)

L. Leng, Y. Yuan, Q. Chen, M. Shen, Q. Ma, B. Lin, D. Zhu, J. Qu, and F. Lu, “Biometry of anterior segment of human eye on both horizontal and vertical meridians during accommodation imaged with extended scan depth optical coherence tomography,” PLoS One 9(8), e104775 (2014).
[Crossref] [PubMed]

Vision Res. (8)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[Crossref] [PubMed]

N. López-Gil, I. Iglesias, and P. Artal, “Retinal image quality in the human eye as a function of the accommodation,” Vision Res. 38(19), 2897–2907 (1998).
[Crossref] [PubMed]

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vision Res. 38(2), 209–229 (1998).
[Crossref] [PubMed]

J. C. He, S. A. Burns, and S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40(1), 41–48 (2000).
[Crossref] [PubMed]

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res. 50(19), 1922–1927 (2010).
[Crossref] [PubMed]

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008).
[Crossref] [PubMed]

J. Birkenfeld, A. de Castro, S. Ortiz, D. Pascual, and S. Marcos, “Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism,” Vision Res. 86, 27–34 (2013).
[Crossref] [PubMed]

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (12413 KB)      example (S#3) of the corneal and lens segmented surfaces from the OCT image for different accommodative states

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Illustration of the acquisition of an individual data collection of three volume acquisitions and merging to obtain a 3-D full anterior segment volume.
Fig. 2
Fig. 2 Illustration of the effect of distortion correction on the anterior segment surfaces in S#1 (OS). Left data: from optical paths, without distortion correction; right data: distortion correction.
Fig. 3
Fig. 3 (a) Examples of 3-D images in S#2 (OD) relaxed (left) and for 6 D of accommodative demand (right). (b) Corneal (up) and crystalline lens (down), anterior (left) and posterior (right) surface elevation maps in S#2 (OD) relaxed accommodation. Data are for 4 mm.
Fig. 4
Fig. 4 Anterior and posterior crystalline lens elevation surface maps in the unaccommodated state (maps exclude tilt, defocus and astigmatism).
Fig. 5
Fig. 5 Anterior and posterior crystalline lens surface Zernike coefficient (plots include astigmatism and high-order terms; pupil diameter is 4-mm).
Fig. 6
Fig. 6 (a) Cornea and crystalline lens surface elevation Zernike terms (astigmatism and high-order) in the relaxed state (average over all subjects). (b) Cornea and crystalline lens individual Zernike coefficients (high-order) in the relaxed state.
Fig. 7
Fig. 7 Natural vs phenylephrine conditions in the anterior crystalline lens surface (Zernike coefficients) for all accommodative demands.
Fig. 8
Fig. 8 Biometric and geometrical changes with accommodation: (a) Anterior Chamber Depth, (b) Lens Thickness, (c) Anterior Lens Radius and (d) Posterior Lens Radius (e) Accommodative response vs Accommodative demand in all subjects.
Fig. 9
Fig. 9 (Visualization 1) Example of the anterior segment segmented surfaces (corneal and lens) with accommodation (left) and the corresponding lens surface elevation maps for different accommodative demands (right). Data are for subject S#2 (OS). Pupil diameter in maps is 4-mm.
Fig. 10
Fig. 10 Average RMS of high-order irregularities, astigmatism, coma, trefoil and spherical for different accommodative demands. Data are for 4-mm pupils.
Fig. 11
Fig. 11 Power vector polar plot of astigmatism in anterior and posterior crystalline lens surfaces, for different accommodative demands. Each panel represents a different eye. Red lines stand for anterior lens and blue lines for posterior lens astigmatism. Each line type represents a different accommodative demand. The angle represents the axis of astigmatism and the length of the vectors represents the magnitude of the corresponding surface astigmatism.
Fig. 12
Fig. 12 Astigmatism surface magnitude in all eyes for different accommodative demands.

Tables (3)

Tables Icon

Table 1 Individual refractive profile (age and refractive error)

Tables Icon

Table 2 Pearson correlation coefficient and p-value for individual Zernike coefficients in corneal and lens surfaces in the relaxed state.

Tables Icon

Table 3 Relative contribution (in terms of %) of different Zernike terms to the overall surface elevation maps (for 4-mm pupils).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

 P C =  n h 1 R c ; P L = ( n l n h )( 1 R a 1 R p )+ ( n l  n h ) 2  LT n l  R a R p
P=  P C + P L ACD*P c *P L n h + ( n l  n h ) * LT*P c n l *R p
J 0 = 2 6 C 2 2 R 2 ; J 45 = 2 6 C 2 2 R 2 ; C=2 J 0 2 + J 45 2 ; α= 1 2 arctan J 45 J 0

Metrics