Abstract

Liquid crystal (LC)-based biosensors employ highly sensitive interfaces between the alignment layers and LCs to detect biomolecules and their interactions. Present techniques based on optical texture observation of the homeotropic-to-planar response of nematic LCs are limited by their quantitative reproducibility of results, indicating that both the accuracy and reliability of LC-based detection require further improvements. Here we show that cholesteric LC (CLC) can be used as a novel sensing element in the design of an alternative LC-based biosensing device. The chirality of the vertically anchored (VA) CLC was exploited in the detection of bovine serum albumin (BSA), a protein standard commonly used in protein quantitation. The color appearance and the corresponding transmission spectrum of the cholesteric phase changed with the concentration of BSA, by which a detection limit of 1 fg/ml was observed. The optical response of the VA CLC interface offers a simple and inexpensive platform for highly sensitive and naked-eye color-indicating detection of biomolecules, and, thus, may facilitate the development of point-of-care devices for the detection of disease-related biomarkers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free, color-indicating, and sensitive biosensors of cholesteric liquid crystals on a single vertically aligned substrate

Fu-Lun Chen, Yu-Jui Fan, Jia-De Lin, and Yu-Cheng Hsiao
Biomed. Opt. Express 10(9) 4636-4642 (2019)

Label-free protein sensing by employing blue phase liquid crystal

Mon-Juan Lee, Chung-Huan Chang, and Wei Lee
Biomed. Opt. Express 8(3) 1712-1720 (2017)

Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules

Wei-Liang Hsu, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 10(10) 4987-4998 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
    [Crossref]
  2. C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
    [Crossref] [PubMed]
  3. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
    [Crossref] [PubMed]
  4. C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
    [Crossref] [PubMed]
  5. V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
    [Crossref] [PubMed]
  6. T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
    [Crossref] [PubMed]
  7. H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
    [Crossref] [PubMed]
  8. S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
    [Crossref] [PubMed]
  9. H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
    [Crossref] [PubMed]
  10. P. G. De Genes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993), 2nd ed., Chap. 6.
  11. Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
    [Crossref] [PubMed]
  12. Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
    [Crossref] [PubMed]
  13. Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
    [Crossref] [PubMed]
  14. Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
    [Crossref] [PubMed]
  15. Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
    [Crossref] [PubMed]
  16. Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
    [Crossref] [PubMed]
  17. Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
    [Crossref]
  18. D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
    [Crossref]
  19. T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199(1), 7–17 (1991).
    [Crossref]
  20. H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
    [Crossref] [PubMed]
  21. L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
    [Crossref] [PubMed]
  22. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
    [Crossref]
  23. D. Patko, K. Cottier, A. Hamori, and R. Horvath, “Single beam grating coupled interferometry: high resolution miniaturized label-free sensor for plate based parallel screening,” Opt. Express 20(21), 23162–23173 (2012).
    [Crossref] [PubMed]

2015 (5)

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref] [PubMed]

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref] [PubMed]

Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref] [PubMed]

Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
[Crossref] [PubMed]

2014 (3)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (4)

2010 (1)

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

2008 (1)

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

2005 (1)

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

2003 (1)

D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
[Crossref]

2001 (1)

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

1998 (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

1991 (1)

T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199(1), 7–17 (1991).
[Crossref]

Abbott, N. L.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

Bisoyi, H. K.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Bock, W. J.

T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199(1), 7–17 (1991).
[Crossref]

Chen, C.-H.

Chen, C.-Y.

Chen, T. H.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref] [PubMed]

Clare, B. H.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

Cottier, K.

Dong, H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Dubrovsky, T. B.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

Gupta, V. K.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

Hamori, A.

Ho, C. M.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref] [PubMed]

Horvath, R.

Hou, C.-T.

Hsiao, Y.-C.

Hsu, Y.-C.

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Kim, S. R.

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

Lee, M.-J.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref] [PubMed]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref] [PubMed]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Lee, W.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref] [PubMed]

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref] [PubMed]

Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23(17), 22636–22642 (2015).
[Crossref] [PubMed]

Y.-C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref] [PubMed]

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Y.-C. Hsiao and W. Lee, “Lower operation voltage in dual-frequency cholesteric liquid crystals based on the thermodielectric effect,” Opt. Express 21(20), 23927–23933 (2013).
[Crossref] [PubMed]

Y.-C. Hsiao, Y.-H. Zou, I. V. Timofeev, V. Ya. Zyryanov, and W. Lee, “Spectral modulation of a bistable liquid-crystal photonic structure by the polarization effect,” Opt. Mater. Express 3(6), 821–828 (2013).
[Crossref]

Y.-C. Hsiao, C. Y. Tang, and W. Lee, “Fast-switching bistable cholesteric intensity modulator,” Opt. Express 19(10), 9744–9749 (2011).
[Crossref] [PubMed]

Y.-C. Hsiao, C.-Y. Wu, C.-H. Chen, V. Ya. Zyryanov, and W. Lee, “Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal,” Opt. Lett. 36(14), 2632–2634 (2011).
[Crossref] [PubMed]

Y.-C. Hsiao, C.-T. Hou, V. Ya. Zyryanov, and W. Lee, “Multichannel photonic devices based on tristable polymer-stabilized cholesteric textures,” Opt. Express 19(24), 23952–23957 (2011).
[Crossref] [PubMed]

Lee, Y.-H.

S.-H. Sun, M.-J. Lee, Y.-H. Lee, W. Lee, X. Song, and C.-Y. Chen, “Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture,” Biomed. Opt. Express 6(1), 245–256 (2015).
[Crossref] [PubMed]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Li, Q.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Li, Y.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Liu, R.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Narayanaswamy, R.

D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
[Crossref]

Patko, D.

Raimundo, I. M.

D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
[Crossref]

Shen, X.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref] [PubMed]

Skaife, J. J.

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

Song, X.

Su, H.-W.

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref] [PubMed]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Sun, L. D.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Sun, S.-H.

Tang, C. Y.

Timofeev, I. V.

Wang, L.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Wang, Y. F.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Winterbottom, D. A.

D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
[Crossref]

Wolinski, T. R.

T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199(1), 7–17 (1991).
[Crossref]

Wong, T. S.

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref] [PubMed]

Wu, C.-Y.

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Xue, C.-Y.

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

Yan, C. H.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

Yang, K.-L.

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

Zou, Y.-H.

Zyryanov, V. Ya.

Acc. Chem. Res. (1)

H. K. Bisoyi and Q. Li, “Light-directing chiral liquid crystal nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Adv. Mater. (2)

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, and Q. Li, “Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer,” Adv. Mater. 27(12), 2065–2069 (2015).
[Crossref] [PubMed]

S. R. Kim and N. L. Abbott, “Rubbed films of functionalized bovine serum albumin as substrates for the imaging of protein–receptor interactions using liquid crystals,” Adv. Mater. 13(19), 1445–1449 (2001).
[Crossref]

Anal. Chem. (1)

T. S. Wong, T. H. Chen, X. Shen, and C. M. Ho, “Nanochromatography driven by the coffee ring effect,” Anal. Chem. 83(6), 1871–1873 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

J. Biomed. Opt. (2)

H.-W. Su, M.-J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 057004 (2015).
[Crossref] [PubMed]

H.-W. Su, Y.-H. Lee, M.-J. Lee, Y.-C. Hsu, and W. Lee, “Label-free immunodetection of the cancer biomarker CA125 using high-Δn liquid crystals,” J. Biomed. Opt. 19(7), 077006 (2014).
[Crossref] [PubMed]

Langmuir (3)

C.-Y. Xue and K.-L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005).
[Crossref] [PubMed]

C.-H. Chen and K.-L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

Mol. Cryst. Liq. Cryst. (1)

T. R. Woliński and W. J. Bock, “Cholesteric liquid crystal sensing of high hydrostatic pressure utilizing optical fibers,” Mol. Cryst. Liq. Cryst. 199(1), 7–17 (1991).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Science (1)

V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science 279(5359), 2077–2080 (1998).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

D. A. Winterbottom, R. Narayanaswamy, and I. M. Raimundo., “Cholesteric liquid crystals for detection of organic vapours,” Sens. Actuators B Chem. 90(1-3), 52–57 (2003).
[Crossref]

Other (1)

P. G. De Genes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993), 2nd ed., Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the CLC structures in a VAC biosensor. The configuration shifts from the major-reflection to the major-transmission mode in the presence of significantly abundant biomolecules.
Fig. 2
Fig. 2 POM images of VAC cells prepared with various concentrations (0 to 1 mg/ml) of BSA immobilized atop the DMOAP layers.
Fig. 3
Fig. 3 Representative VAC cells featuring the color-indicating properties of the VAC biosensor at different BSA concentrations.
Fig. 4
Fig. 4 The optical mechanism of the VAC biosensor in both major reflection and transmittance modes.
Fig. 5
Fig. 5 The transmission spectra of VAC cells prepared with various concentrations of BSA.
Fig. 6
Fig. 6 Correlations of minimum transmittance and bandwidth of Bragg’s reflection to BSA concentration.

Metrics