Abstract

We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips

Erik P. Schartner, Georgios Tsiminis, Matthew R. Henderson, Stephen C. Warren-Smith, and Tanya M. Monro
Opt. Express 24(16) 18541-18550 (2016)

Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs

Yinquan Yuan, Xi Yang, Dejing Gong, Fang Liu, Wenbin Hu, Weiquan Cai, Jun Huang, and Minghong Yang
Opt. Express 25(4) 3884-3898 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
    [Crossref] [PubMed]
  2. K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
    [Crossref] [PubMed]
  3. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  4. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  5. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  6. N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
    [Crossref]
  7. S. Ko and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium,” Biosens. Bioelectron. 21(7), 1283–1290 (2006).
    [Crossref] [PubMed]
  8. K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
    [Crossref] [PubMed]
  9. G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
    [Crossref]
  10. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
    [Crossref] [PubMed]
  11. A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
    [Crossref] [PubMed]
  12. S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
    [Crossref]
  13. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
    [Crossref] [PubMed]
  14. J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
    [Crossref] [PubMed]
  15. K. Tanaka, M. T. Pacheco, J. F. Brennan, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Appl. Opt. 35(4), 758–763 (1996).
    [Crossref] [PubMed]
  16. W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic New York, 1978).
  17. L. C. Chen, A. L. Y. Low, and S. F. Chien, “Compound parabolic tapered fiber for fiber coupling with a highly divergent source,” Appl. Opt. 43(32), 5923–5925 (2004).
    [Crossref] [PubMed]
  18. S. Gangadhara, “How to Model Fluorescence Using Bulk Scattering,” (2008). https://www.zemax.com/support/knowledgebase/how-to-model-fluorescence-using-bulk-scattering .
  19. G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
    [Crossref]
  20. “Modal Effects on Multimode Fiber Loss Measurements.”, http://www.thefoa.org/tech/ref/testing/test/MPD.html .
  21. “Acrlylic Sheet Fabrication Manual.”, http://www.plexiglas.com/export/sites/plexiglas/.content/medias/downloads/sheet-docs/plexiglas-fabrication-manual.pdf
  22. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  23. K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Opt. Express 15(14), 8844–8850 (2007).
    [Crossref] [PubMed]
  24. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]

2015 (1)

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

2013 (3)

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

2012 (1)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

2011 (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

2010 (1)

A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
[Crossref] [PubMed]

2009 (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

2008 (1)

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

S. Ko and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium,” Biosens. Bioelectron. 21(7), 1283–1290 (2006).
[Crossref] [PubMed]

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

1997 (1)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

1996 (1)

Aasmul, S.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Abell, A. D.

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Argyros, A.

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Ballerstadt, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
[Crossref] [PubMed]

Bang, O.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Berger, A. J.

Berti, L.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[Crossref] [PubMed]

Bjarklev, A.

Brennan, J. F.

Carroll, K. E.

Chen, G.

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

Chen, L. C.

Chien, S. F.

Christiansen, J. S.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Clifton, W.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Dasari, R. R.

Ebendorff-Heidepriem, H.

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Emiliyanov, G.

Evans, C.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
[Crossref] [PubMed]

Feld, M. S.

Garito, A. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Giri, A.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Gowda, A.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
[Crossref] [PubMed]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Grant, S. A.

S. Ko and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium,” Biosens. Bioelectron. 21(7), 1283–1290 (2006).
[Crossref] [PubMed]

Gregorius, K.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hansen, L. L.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Heng, S.

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hogen-Esch, T.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

Hoiby, P.

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Huang, L.

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Itzkan, I.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Jensen, J.

Jensen, J. B.

Jiang, G.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Kalli, K.

Kjaer, E. M.

Ko, S.

S. Ko and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium,” Biosens. Bioelectron. 21(7), 1283–1290 (2006).
[Crossref] [PubMed]

Kristensen, J. S.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Large, M. C.

Lemmens, P.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Li, Q.

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Liao, K.-C.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

Lindvold, L.

Liu, S.

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Loeb, G. E.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

Low, A. L. Y.

Marcu, L.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

McNichols, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
[Crossref] [PubMed]

Medintz, I. L.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[Crossref] [PubMed]

Mondal, P. K.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Monro, T. M.

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Neher, E.

A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
[Crossref] [PubMed]

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, J. K.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Nielsen, K.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Pacheco, M. T.

Pal, S. K.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Pedersen, L.

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

Peng, X.

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

Polley, N.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Rasmussen, H. K.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Richmond, F. J.

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Sapsford, K. E.

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[Crossref] [PubMed]

Shi, R. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Singh, S.

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Song, F.

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Tanaka, K.

Toft, H. O.

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

Wang, C.

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Warren-Smith, S. C.

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Webb, D. J.

Wlodarczyk, J.

A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
[Crossref] [PubMed]

Woehler, A.

A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
[Crossref] [PubMed]

Xiong, X.

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

Xu, H.

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Yuan, W.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, C.

ACS Nano (1)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3(3), 744–752 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

K. E. Sapsford, L. Berti, and I. L. Medintz, “Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations,” Angew. Chem. Int. Ed. Engl. 45(28), 4562–4589 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Biophys. J. (1)

A. Woehler, J. Wlodarczyk, and E. Neher, “Signal/noise analysis of FRET-based sensors,” Biophys. J. 99(7), 2344–2354 (2010).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

K.-C. Liao, T. Hogen-Esch, F. J. Richmond, L. Marcu, W. Clifton, and G. E. Loeb, “Percutaneous fiber-optic sensor for chronic glucose monitoring in vivo,” Biosens. Bioelectron. 23(10), 1458–1465 (2008).
[Crossref] [PubMed]

S. Ko and S. A. Grant, “A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium,” Biosens. Bioelectron. 21(7), 1283–1290 (2006).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Ind. Eng. Chem. Res. (1)

G. Chen, F. Song, X. Xiong, and X. Peng, “Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET),” Ind. Eng. Chem. Res. 52(33), 11228–11245 (2013).
[Crossref]

J. Diabetes Sci. Technol. (2)

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “Fiber-coupled fluorescence affinity sensor for 3-day in vivo glucose sensing,” J. Diabetes Sci. Technol. 1(3), 384–393 (2007).
[Crossref] [PubMed]

J. K. Nielsen, J. S. Christiansen, J. S. Kristensen, H. O. Toft, L. L. Hansen, S. Aasmul, and K. Gregorius, “Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading,” J. Diabetes Sci. Technol. 3(1), 98–109 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

S. Liu, L. Huang, C. Wang, Q. Li, and H. Xu, “Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods,” J. Phys. Chem. C 117(20), 10636–10642 (2013).
[Crossref]

Langmuir (1)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

N. Polley, S. Singh, A. Giri, P. K. Mondal, P. Lemmens, and S. K. Pal, “Ultrafast FRET at fiber tips: Potential applications in sensitive remote sensing of molecular interaction,” Sens. Actuators B Chem. 210, 381–388 (2015).
[Crossref]

Sensors (Basel) (1)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Other (4)

S. Gangadhara, “How to Model Fluorescence Using Bulk Scattering,” (2008). https://www.zemax.com/support/knowledgebase/how-to-model-fluorescence-using-bulk-scattering .

W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators (Academic New York, 1978).

“Modal Effects on Multimode Fiber Loss Measurements.”, http://www.thefoa.org/tech/ref/testing/test/MPD.html .

“Acrlylic Sheet Fabrication Manual.”, http://www.plexiglas.com/export/sites/plexiglas/.content/medias/downloads/sheet-docs/plexiglas-fabrication-manual.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 MEDTRONIC Glucose Sensor and its basic sensing principle (a) Assay chemistry with FRET for low and high glucose concentration conditions resulting in (b) corresponding low and high fluorescence related to glucose levels. (c) Optical fiber bonded to assay containing membrane.
Fig. 2
Fig. 2 (a) Geometry of a compound parabolic concentrator (CPC), (b) Edge ray principle for the CPC.
Fig. 3
Fig. 3 Zemax model with transmission fiber and CPC tip. The left inset shows the source, filter and detector. The right inset shows the CPC configuration and geometry.
Fig. 4
Fig. 4 Relative increase ΔP = |PCPC-Pplane|/Pplane in detected fluorescence power PCPC for a 5 mm long POF with a CPC tip of varying output diameter 2a2, as compared to the detected power of a 5 mm long straight plane-cut POF.
Fig. 5
Fig. 5 Results of Zemax modelling. (a) Detected fluorescent power for a 1W 26° cosine excitation source, as a function of fiber length; (b) Ratio between fluorescent power collected by the CPC tipped and the plane cut fiber versus fiber length.
Fig. 6
Fig. 6 Fluorescence radiance in angular space at a detector placed at the end of the fiber for fiber lengths 5 and 55 mm. (a) for plane-cut fiber tip. (b) for CPC tipped fiber.
Fig. 7
Fig. 7 Setup for CPC formation, with heat reflector shown at upper right corner.
Fig. 8
Fig. 8 Tapered optical fiber, each pull producing two CPCs which are cut at certain lengths as shown by white arrows and further on polished to required CPC output diameters.
Fig. 9
Fig. 9 Shape of CPCs from two batches: The Pulling distance was 0.8 mm, the Pulling speed was 0.4 mm/sec, and the heating time was 10 and 5 sec for Batch 1 and 2, respectively.
Fig. 10
Fig. 10 CPC with its geometrical parameters for characterization.
Fig. 11
Fig. 11 (a) Dummy sensor (b) Setup for optical characterization of the CPC based sensor.
Fig. 12
Fig. 12 Fluorescent spectrum for assay and reference fluorescence of batch 1 and plane cut fiber tip.
Fig. 13
Fig. 13 Fluorescence spectrum normalized to plane cut fiber measured spectrum.
Fig. 14
Fig. 14 (a) Image of CPC 2 with indication of the 26 radius measurement points. (b) Reconstructed and ideal CPC 2 shapes. (c) Increment factor comparison of ideal and real CPC 2 for different fiber lengths.
Fig. 15
Fig. 15 Increment factor spread for CPC Length vs Maximum CPC diameter.

Tables (3)

Tables Icon

Table 1 Geometrical characterization of two batches

Tables Icon

Table 2 Increased in detected fluorescent power for two batches compared to plane cut fiber tip.

Tables Icon

Table 3 Correlation among the CPC length, maximum diameter, and increment factor

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a 1 N A 1 = a 2 N A 2 a 1 ( n 1 sin θ 1 )= a 2 ( n 2 sin θ 2 )
a 1 = a 2 /sin θ i
L=( a 1 + a 2 )/tan θ i

Metrics