Abstract

Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive “optical biopsy” techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescein as a topical fluorescent contrast agent for quantitative microendoscopic inspection of colorectal epithelium

Sandra P. Prieto, Keith K. Lai, Jonathan A. Laryea, Jason S. Mizell, William C. Mustain, and Timothy J. Muldoon
Biomed. Opt. Express 8(4) 2324-2338 (2017)

Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo

Kung-Bin Sung, Rebecca Richards-Kortum, Michele Follen, Anais Malpica, Chen Liang, and Michael R. Descour
Opt. Express 11(24) 3171-3181 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. Sharma and E. Montgomery, “Gastrointestinal dysplasia,” Pathology 45(3), 273–285 (2013).
    [Crossref] [PubMed]
  2. P. M. Speight, “Update on oral epithelial dysplasia and progression to cancer,” Head Neck Pathol. 1(1), 61–66 (2007).
    [Crossref] [PubMed]
  3. Y. Zhang, “Epidemiology of esophageal cancer,” World J. Gastroenterol. 19(34), 5598–5606 (2013).
    [Crossref] [PubMed]
  4. N. Harpaz and A. D. Polydorides, “Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis,” Arch. Pathol. Lab. Med. 134(6), 876–895 (2010).
    [PubMed]
  5. M. Ponz de Leon and C. Di Gregorio, “Pathology of colorectal cancer,” Dig. Liver Dis. 33(4), 372–388 (2001).
    [Crossref] [PubMed]
  6. M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
    [Crossref] [PubMed]
  7. S. J. Hwang and K. R. Shroyer, “Biomarkers of Cervical Dysplasia and Carcinoma,” J. Oncol. 2012, 507286 (2012).
    [Crossref] [PubMed]
  8. R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
    [Crossref] [PubMed]
  9. T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
    [Crossref] [PubMed]
  10. H. D. Appelman, “What is dysplasia in the gastrointestinal tract?” Arch. Pathol. Lab. Med. 129(2), 170–173 (2005).
    [PubMed]
  11. M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
    [Crossref] [PubMed]
  12. T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
    [Crossref] [PubMed]
  13. M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
    [Crossref] [PubMed]
  14. M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
    [PubMed]
  15. M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
    [Crossref] [PubMed]
  16. S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
    [Crossref] [PubMed]
  17. P. A. Keahey, T. S. Tkaczyk, K. M. Schmeler, and R. R. Richards-Kortum, “Optimizing modulation frequency for structured illumination in a fiber-optic microendoscope to image nuclear morphometry in columnar epithelium,” Biomed. Opt. Express 6(3), 870–880 (2015).
    [Crossref] [PubMed]
  18. N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
    [Crossref] [PubMed]
  19. S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
    [Crossref] [PubMed]
  20. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
    [Crossref] [PubMed]
  21. W. Piyawattanametha and T. D. Wang, “MEMS-Based Dual Axes Confocal Microendoscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 804–814 (2010).
    [Crossref] [PubMed]
  22. X. Chen, X. Xu, D. T. McCormick, K. Wong, and S. T. C. Wong, “Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging,” Biomed. Opt. Express 6(7), 2283–2293 (2015).
    [Crossref] [PubMed]
  23. S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
    [Crossref] [PubMed]
  24. S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
    [Crossref] [PubMed]
  25. R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
    [Crossref] [PubMed]
  26. J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
    [Crossref] [PubMed]
  27. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
    [Crossref] [PubMed]
  28. N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
    [Crossref] [PubMed]
  29. N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
    [Crossref] [PubMed]
  30. G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).
  31. Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
    [Crossref] [PubMed]
  32. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  33. M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).
  34. G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
    [Crossref] [PubMed]
  35. N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
    [Crossref] [PubMed]
  36. A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
    [Crossref] [PubMed]
  37. M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
    [Crossref] [PubMed]
  38. V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010).
    [Crossref] [PubMed]
  39. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  40. N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
    [Crossref] [PubMed]
  41. S. A. Prahl, Optical Absorption of Hemoglobin (O.M.L. Center, 1999).
  42. S. L. Jacques, Optical Absorption of Melanin (O.M.L. Center, 2015).
  43. A. J. Gomes, V. Turzhitsky, S. Ruderman, and V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
    [Crossref] [PubMed]
  44. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
    [Crossref] [PubMed]
  45. V. Kiisk, “An educational spectrograph using a digital camera as a training aid for physics students,” Eur. J. Phys. 35(3), 035013 (2014).
    [Crossref]
  46. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
    [Crossref] [PubMed]
  47. S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
    [Crossref] [PubMed]
  48. A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
    [Crossref] [PubMed]
  49. L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
    [Crossref] [PubMed]
  50. B. O. Karim and D. L. Huso, “Mouse models for colorectal cancer,” Am. J. Cancer Res. 3(3), 240–250 (2013).
    [PubMed]
  51. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
    [Crossref] [PubMed]
  52. H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. E. Gregory, “Pressure Effects on Soft Tissues Monitored by Changes in Tissue Optical Properties,” SPIE Proceedings of Laser-Tissue Interaction IX, 3254, 366–371 (1998).
    [Crossref]
  53. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [Crossref] [PubMed]
  54. A. Siegman, “Fresnel reflection, lenserfreflection and evanescent gain,” Opt. Photonics News 21(1), 38–45 (2010).
    [Crossref]
  55. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
    [Crossref] [PubMed]
  56. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
    [Crossref]
  57. H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
    [Crossref] [PubMed]
  58. R. A. Wall and J. K. Barton, “Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system,” J. Biomed. Opt. 19(6), 067002 (2014).
    [Crossref] [PubMed]
  59. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
    [Crossref] [PubMed]
  60. F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. Sterenborg, A. Amelink, and D. J. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4(5), 696–708 (2013).
    [Crossref] [PubMed]
  61. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [Crossref] [PubMed]
  62. A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
    [Crossref] [PubMed]
  63. M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
    [Crossref] [PubMed]
  64. J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
    [Crossref] [PubMed]
  65. Y. Yamada and H. Mori, “Multistep carcinogenesis of the colon in ApcMin/+ mouse,” Cancer Sci. 98(1), 6–10 (2007).
    [Crossref] [PubMed]

2015 (5)

P. A. Keahey, T. S. Tkaczyk, K. M. Schmeler, and R. R. Richards-Kortum, “Optimizing modulation frequency for structured illumination in a fiber-optic microendoscope to image nuclear morphometry in columnar epithelium,” Biomed. Opt. Express 6(3), 870–880 (2015).
[Crossref] [PubMed]

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

X. Chen, X. Xu, D. T. McCormick, K. Wong, and S. T. C. Wong, “Multimodal nonlinear endo-microscopy probe design for high resolution, label-free intraoperative imaging,” Biomed. Opt. Express 6(7), 2283–2293 (2015).
[Crossref] [PubMed]

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

2014 (9)

V. Kiisk, “An educational spectrograph using a digital camera as a training aid for physics students,” Eur. J. Phys. 35(3), 035013 (2014).
[Crossref]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

R. A. Wall and J. K. Barton, “Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system,” J. Biomed. Opt. 19(6), 067002 (2014).
[Crossref] [PubMed]

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

2013 (6)

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Y. Zhang, “Epidemiology of esophageal cancer,” World J. Gastroenterol. 19(34), 5598–5606 (2013).
[Crossref] [PubMed]

P. Sharma and E. Montgomery, “Gastrointestinal dysplasia,” Pathology 45(3), 273–285 (2013).
[Crossref] [PubMed]

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. Sterenborg, A. Amelink, and D. J. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4(5), 696–708 (2013).
[Crossref] [PubMed]

B. O. Karim and D. L. Huso, “Mouse models for colorectal cancer,” Am. J. Cancer Res. 3(3), 240–250 (2013).
[PubMed]

2012 (7)

A. J. Gomes, V. Turzhitsky, S. Ruderman, and V. Backman, “Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties,” Appl. Opt. 51(20), 4627–4637 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

S. J. Hwang and K. R. Shroyer, “Biomarkers of Cervical Dysplasia and Carcinoma,” J. Oncol. 2012, 507286 (2012).
[Crossref] [PubMed]

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

2011 (7)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
[PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, and V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

2010 (8)

A. Siegman, “Fresnel reflection, lenserfreflection and evanescent gain,” Opt. Photonics News 21(1), 38–45 (2010).
[Crossref]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

V. Turzhitsky, A. Radosevich, J. D. Rogers, A. Taflove, and V. Backman, “A predictive model of backscattering at subdiffusion length scales,” Biomed. Opt. Express 1(3), 1034–1046 (2010).
[Crossref] [PubMed]

W. Piyawattanametha and T. D. Wang, “MEMS-Based Dual Axes Confocal Microendoscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 804–814 (2010).
[Crossref] [PubMed]

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

N. Harpaz and A. D. Polydorides, “Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis,” Arch. Pathol. Lab. Med. 134(6), 876–895 (2010).
[PubMed]

2009 (2)

S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[Crossref] [PubMed]

S. H. Tseng, P. Bargo, A. Durkin, and N. Kollias, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Opt. Express 17(17), 14599–14617 (2009).
[Crossref] [PubMed]

2008 (3)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Yamada and H. Mori, “Multistep carcinogenesis of the colon in ApcMin/+ mouse,” Cancer Sci. 98(1), 6–10 (2007).
[Crossref] [PubMed]

P. M. Speight, “Update on oral epithelial dysplasia and progression to cancer,” Head Neck Pathol. 1(1), 61–66 (2007).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2005 (3)

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

H. D. Appelman, “What is dysplasia in the gastrointestinal tract?” Arch. Pathol. Lab. Med. 129(2), 170–173 (2005).
[PubMed]

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

2002 (2)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
[Crossref] [PubMed]

2001 (1)

M. Ponz de Leon and C. Di Gregorio, “Pathology of colorectal cancer,” Dig. Liver Dis. 33(4), 372–388 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (2)

M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

1992 (1)

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

1990 (1)

A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
[Crossref] [PubMed]

Amelink, A.

F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. Sterenborg, A. Amelink, and D. J. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4(5), 696–708 (2013).
[Crossref] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[Crossref] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[Crossref] [PubMed]

Anandasabapathy, S.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Appelman, H. D.

H. D. Appelman, “What is dysplasia in the gastrointestinal tract?” Arch. Pathol. Lab. Med. 129(2), 170–173 (2005).
[PubMed]

Aramil, T. J.

Arends, M. J.

M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
[Crossref] [PubMed]

Backman, V.

Baiju, K. V.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Balachandran, K.

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

Bao, H.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Bargo, P.

Barton, J. K.

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

R. A. Wall and J. K. Barton, “Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system,” J. Biomed. Opt. 19(6), 067002 (2014).
[Crossref] [PubMed]

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Beena, V. T.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Benedet, L.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Bhattar, V. S.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Bixler, J. N.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Boice, J. W.

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

Bong, E.

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Bubi, T. C.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Buckley, C. H.

M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
[Crossref] [PubMed]

Castle, P.

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

Chang, S. S.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Chen, X.

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Cuccia, D.

Dacosta, R. S.

R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
[Crossref] [PubMed]

de Bruijn, H. S.

Di Gregorio, C.

M. Ponz de Leon and C. Di Gregorio, “Pathology of colorectal cancer,” Dig. Liver Dis. 33(4), 372–388 (2001).
[Crossref] [PubMed]

Dimou, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Dove, W. F.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
[Crossref] [PubMed]

Drezek, R. A.

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

Durkin, A.

Duvic, M.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Ehlen, T.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Elliott, J. T.

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Feld, M. S.

Fitzmaurice, M.

Follen, M.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Gamm, U. A.

Garcia-Uribe, A.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Gardner, A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Gillenwater, A.

Gillenwater, A. M.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Godbold, J.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Gomes, A. J.

Gonzalez, S.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Gopal, A.

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

Goth, W.

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

Gould, K. A.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Greening, G. J.

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

Gu, H. M.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Gu, M.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Guan, Y.

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Han, G.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Han, H.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Harpaz, N.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

N. Harpaz and A. D. Polydorides, “Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis,” Arch. Pathol. Lab. Med. 134(6), 876–895 (2010).
[PubMed]

Hayakawa, C.

Hennessy, R.

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

Higgins, L. M.

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

Huan, Y.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Huso, D. L.

B. O. Karim and D. L. Huso, “Mouse models for colorectal cancer,” Am. J. Cancer Res. 3(3), 240–250 (2013).
[PubMed]

Hutcheson, J. A.

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

Hwang, S. J.

S. J. Hwang and K. R. Shroyer, “Biomarkers of Cervical Dysplasia and Carcinoma,” J. Oncol. 2012, 507286 (2012).
[Crossref] [PubMed]

Istfan, R.

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

Jabbour, J. M.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Jayanthi, J. L.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Jeemon, P.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Jin, Y.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Kang, H.

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

Kanick, S. C.

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5(10), 3376–3390 (2014).
[Crossref] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[Crossref] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[Crossref] [PubMed]

Karim, B. O.

B. O. Karim and D. L. Huso, “Mouse models for colorectal cancer,” Am. J. Cancer Res. 3(3), 240–250 (2013).
[PubMed]

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Kayembe, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Keahey, P. A.

Kedia, P.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Keenan, M. R.

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

Kiisk, V.

V. Kiisk, “An educational spectrograph using a digital camera as a training aid for physics students,” Eur. J. Phys. 35(3), 035013 (2014).
[Crossref]

Kim, D. H.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Kim, M. K.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Kinzler, K. W.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Kolesnikova, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Kollias, N.

Krishnaswamy, V.

Larson, A. C.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Lee, J. J.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Lee, K.

Lee, M.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Lee, M. H.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Leung, S. J.

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

Lewis, J.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Li, W.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Li, X. Y.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Löwik, C. W. G. M.

Lu, J. J.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Luongo, C.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Maitland, K. C.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Majid, A. A.

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

Manju, S.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Manoharan, R.

Marcon, N. E.

R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
[Crossref] [PubMed]

Marín, N. M.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Markey, M. K.

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

Martinelli, M.

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

McClatchy, D. M.

McCormick, D. T.

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

Migden, M. R.

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

Milbourne, A.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Miller, D.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Mitcham, J.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Mol, I. M.

Mondrik, S.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Montgomery, E.

P. Sharma and E. Montgomery, “Gastrointestinal dysplasia,” Pathology 45(3), 273–285 (2013).
[Crossref] [PubMed]

Mori, H.

Y. Yamada and H. Mori, “Multistep carcinogenesis of the colon in ApcMin/+ mouse,” Cancer Sci. 98(1), 6–10 (2007).
[Crossref] [PubMed]

Moser, A. R.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
[Crossref] [PubMed]

Moshier, E.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Muldoon, T. J.

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Nguyen, T. H.

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Nicolai, J.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Nida, D. L.

Nisha, G. U.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Omary, R. A.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Parikh, N. D.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Paulsen, K. D.

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Perelman, L. T.

Perl, D.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Philip, E. K.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Pierce, M.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
[PubMed]

Pierce, M. C.

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Pitot, H. C.

A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
[Crossref] [PubMed]

Piyawattanametha, W.

W. Piyawattanametha and T. D. Wang, “MEMS-Based Dual Axes Confocal Microendoscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 804–814 (2010).
[Crossref] [PubMed]

Pogue, B. W.

Polydorides, A. D.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

N. Harpaz and A. D. Polydorides, “Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis,” Arch. Pathol. Lab. Med. 134(6), 876–895 (2010).
[PubMed]

Ponz de Leon, M.

M. Ponz de Leon and C. Di Gregorio, “Pathology of colorectal cancer,” Dig. Liver Dis. 33(4), 372–388 (2001).
[Crossref] [PubMed]

Powless, A. J.

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

Preisinger, A. C.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Prieto, S. P.

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

Prieto, V.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Procissi, D.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Qiao, Y. L.

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

Quinn, M. K.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

Radosevich, A.

Rajaram, N.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramogola-Masire, D.

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

Reichenberg, J. S.

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

Rhodes, H.

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Rice, P. F. S.

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

Rice, P. S.

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

Richards-Kortum, R.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
[PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Richards-Kortum, R. R.

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Robinson, D. J.

Roblyer, D.

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Rogers, J. D.

Rubtsov, V. S.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Ruderman, S.

Saldua, M. A.

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Schmeler, K. M.

Schwarz, R. A.

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Shah, B.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Sharma, M.

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

Sharma, P.

P. Sharma and E. Montgomery, “Gastrointestinal dysplasia,” Pathology 45(3), 273–285 (2013).
[Crossref] [PubMed]

Sharma, S. G.

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

Shen, S.

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Shroyer, K. R.

S. J. Hwang and K. R. Shroyer, “Biomarkers of Cervical Dysplasia and Carcinoma,” J. Oncol. 2012, 507286 (2012).
[Crossref] [PubMed]

Shukla, R.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Siegman, A.

A. Siegman, “Fresnel reflection, lenserfreflection and evanescent gain,” Opt. Photonics News 21(1), 38–45 (2010).
[Crossref]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Smith, E. B.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Snoeks, T. J. A.

Spanier, J.

Speight, P. M.

P. M. Speight, “Update on oral epithelial dysplasia and progression to cancer,” Head Neck Pathol. 1(1), 61–66 (2007).
[Crossref] [PubMed]

Stepanek, V. M. T.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Sterenborg, H. J.

F. van Leeuwen-van Zaane, U. A. Gamm, P. B. A. A. van Driel, T. J. A. Snoeks, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, I. M. Mol, C. W. G. M. Löwik, H. J. Sterenborg, A. Amelink, and D. J. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4(5), 696–708 (2013).
[Crossref] [PubMed]

S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[Crossref] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[Crossref] [PubMed]

Su, L. K.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Subhash, N.

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Taflove, A.

Tkaczyk, T. S.

Tseng, S. H.

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Tunnell, J. W.

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, “Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy,” Appl. Opt. 49(2), 142–152 (2010).
[Crossref] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Turzhitsky, V.

Van Dam, J.

van der Ploeg-van den Heuvel, A.

van Driel, P. B. A. A.

van Leeuwen-van Zaane, F.

Venugopalan, V.

Vila, P. M.

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Vogelstein, B.

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

Wall, R. A.

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

R. A. Wall and J. K. Barton, “Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system,” J. Biomed. Opt. 19(6), 067002 (2014).
[Crossref] [PubMed]

Wang, L. V.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Wang, M.

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Wang, T. D.

W. Piyawattanametha and T. D. Wang, “MEMS-Based Dual Axes Confocal Microendoscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 804–814 (2010).
[Crossref] [PubMed]

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Wei, H. J.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Wells, M.

M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
[Crossref] [PubMed]

Williams, M. D.

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, and R. Richards-Kortum, “Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy,” Opt. Express 15(25), 16413–16423 (2007).
[Crossref] [PubMed]

Wilson, B. C.

R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
[Crossref] [PubMed]

Winkler, A. M.

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

Wong, K.

Wong, S. T. C.

Wu, G. Y.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Xing, D.

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Xu, R.

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Xu, X.

Yamada, Y.

Y. Yamada and H. Mori, “Multistep carcinogenesis of the colon in ApcMin/+ mouse,” Cancer Sci. 98(1), 6–10 (2007).
[Crossref] [PubMed]

Yang, J.

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Young, Y.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Yu, D.

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
[PubMed]

Zhang, W. H.

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

Zhang, X.

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, “Epidemiology of esophageal cancer,” World J. Gastroenterol. 19(34), 5598–5606 (2013).
[Crossref] [PubMed]

Zhang, Z.

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

Zhou, E.

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Zonios, G.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999).
[Crossref] [PubMed]

Zou, J.

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

Am. J. Cancer Res. (1)

B. O. Karim and D. L. Huso, “Mouse models for colorectal cancer,” Am. J. Cancer Res. 3(3), 240–250 (2013).
[PubMed]

Am. J. Gastroenterol. (1)

N. D. Parikh, D. Perl, M. H. Lee, B. Shah, Y. Young, S. S. Chang, R. Shukla, A. D. Polydorides, E. Moshier, J. Godbold, E. Zhou, J. Mitcham, R. Richards-Kortum, and S. Anandasabapathy, “In vivo diagnostic accuracy of high-resolution microendoscopy in differentiating neoplastic from non-neoplastic colorectal polyps: a prospective study,” Am. J. Gastroenterol. 109(1), 68–75 (2014).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. M. Jabbour, M. A. Saldua, J. N. Bixler, and K. C. Maitland, “Confocal endomicroscopy: instrumentation and medical applications,” Ann. Biomed. Eng. 40(2), 378–397 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Arch. Pathol. Lab. Med. (2)

H. D. Appelman, “What is dysplasia in the gastrointestinal tract?” Arch. Pathol. Lab. Med. 129(2), 170–173 (2005).
[PubMed]

N. Harpaz and A. D. Polydorides, “Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis,” Arch. Pathol. Lab. Med. 134(6), 876–895 (2010).
[PubMed]

Biomed. Opt. Express (5)

BMJ Open (1)

J. L. Jayanthi, G. U. Nisha, S. Manju, E. K. Philip, P. Jeemon, K. V. Baiju, V. T. Beena, and N. Subhash, “Diffuse reflectance spectroscopy: diagnostic accuracy of a non-invasive screening technique for early detection of malignant changes in the oral cavity,” BMJ Open 1(1), e000071 (2011).
[Crossref] [PubMed]

Cancer Prev. Res. (Phila.) (2)

M. C. Pierce, Y. Guan, M. K. Quinn, X. Zhang, W. H. Zhang, Y. L. Qiao, P. Castle, and R. Richards-Kortum, “A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer,” Cancer Prev. Res. (Phila.) 5(11), 1273–1279 (2012).
[Crossref] [PubMed]

M. C. Pierce, R. A. Schwarz, V. S. Bhattar, S. Mondrik, M. D. Williams, J. J. Lee, R. Richards-Kortum, and A. M. Gillenwater, “Accuracy of in vivo multimodal optical imaging for detection of oral neoplasia,” Cancer Prev. Res. (Phila.) 5(6), 801–809 (2012).
[Crossref] [PubMed]

Cancer Sci. (1)

Y. Yamada and H. Mori, “Multistep carcinogenesis of the colon in ApcMin/+ mouse,” Cancer Sci. 98(1), 6–10 (2007).
[Crossref] [PubMed]

Dig. Liver Dis. (1)

M. Ponz de Leon and C. Di Gregorio, “Pathology of colorectal cancer,” Dig. Liver Dis. 33(4), 372–388 (2001).
[Crossref] [PubMed]

Endoscopy (1)

S. S. Chang, R. Shukla, A. D. Polydorides, P. M. Vila, M. Lee, H. Han, P. Kedia, J. Lewis, S. Gonzalez, M. K. Kim, N. Harpaz, J. Godbold, R. Richards-Kortum, and S. Anandasabapathy, “High resolution microendoscopy for classification of colorectal polyps,” Endoscopy 45(7), 553–559 (2013).
[Crossref] [PubMed]

Eur. J. Phys. (1)

V. Kiisk, “An educational spectrograph using a digital camera as a training aid for physics students,” Eur. J. Phys. 35(3), 035013 (2014).
[Crossref]

Gynecol. Oncol. (1)

N. M. Marín, A. Milbourne, H. Rhodes, T. Ehlen, D. Miller, L. Benedet, R. Richards-Kortum, and M. Follen, “Diffuse reflectance patterns in cervical spectroscopy,” Gynecol. Oncol. 99(3Suppl 1), S116–S120 (2005).
[Crossref] [PubMed]

Head Neck (1)

T. J. Muldoon, D. Roblyer, M. D. Williams, V. M. T. Stepanek, R. Richards-Kortum, and A. M. Gillenwater, “Noninvasive imaging of oral neoplasia with a high-resolution fiber-optic microendoscope,” Head Neck 34(3), 305–312 (2012).
[Crossref] [PubMed]

Head Neck Pathol. (1)

P. M. Speight, “Update on oral epithelial dysplasia and progression to cancer,” Head Neck Pathol. 1(1), 61–66 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Piyawattanametha and T. D. Wang, “MEMS-Based Dual Axes Confocal Microendoscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 804–814 (2010).
[Crossref] [PubMed]

Int. J. Nanomedicine (1)

Y. Guo, Z. Zhang, D. H. Kim, W. Li, J. Nicolai, D. Procissi, Y. Huan, G. Han, R. A. Omary, and A. C. Larson, “Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles,” Int. J. Nanomedicine 8, 3437–3446 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (11)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

R. Hennessy, W. Goth, M. Sharma, M. K. Markey, and J. W. Tunnell, “Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy,” J. Biomed. Opt. 19(10), 107002 (2014).
[Crossref] [PubMed]

G. J. Greening, R. Istfan, L. M. Higgins, K. Balachandran, D. Roblyer, M. C. Pierce, and T. J. Muldoon, “Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths,” J. Biomed. Opt. 19(11), 115002 (2014).
[Crossref] [PubMed]

A. M. Winkler, P. F. S. Rice, R. A. Drezek, and J. K. Barton, “Quantitative tool for rapid disease mapping using optical coherence tomography images of azoxymethane-treated mouse colon,” J. Biomed. Opt. 15(4), 041512 (2010).
[Crossref] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13(1), 014017 (2008).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

A. Garcia-Uribe, E. B. Smith, J. Zou, M. Duvic, V. Prieto, and L. V. Wang, “In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry,” J. Biomed. Opt. 16(2), 020501 (2011).
[Crossref] [PubMed]

H. J. Wei, D. Xing, G. Y. Wu, H. M. Gu, J. J. Lu, Y. Jin, and X. Y. Li, “Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique,” J. Biomed. Opt. 10(4), 044022 (2005).
[Crossref] [PubMed]

R. A. Wall and J. K. Barton, “Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system,” J. Biomed. Opt. 19(6), 067002 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

J. Clin. Pathol. (1)

M. J. Arends, C. H. Buckley, and M. Wells, “Aetiology, pathogenesis, and pathology of cervical neoplasia,” J. Clin. Pathol. 51(2), 96–103 (1998).
[Crossref] [PubMed]

J. Gastroenterol. Hepatol. (1)

R. S. Dacosta, B. C. Wilson, and N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–S104 (2002).
[Crossref] [PubMed]

J. Microsc. (1)

M. Gu, H. Bao, and H. Kang, “Fibre-optical microendoscopy,” J. Microsc. 254(1), 13–18 (2014).
[Crossref] [PubMed]

J. Oncol. (1)

S. J. Hwang and K. R. Shroyer, “Biomarkers of Cervical Dysplasia and Carcinoma,” J. Oncol. 2012, 507286 (2012).
[Crossref] [PubMed]

J. Vis. Exp. (1)

M. Pierce, D. Yu, and R. Richards-Kortum, “High-resolution fiber-optic microendoscopy for in situ cellular imaging,” J. Vis. Exp. 47, e2306 (2011).
[PubMed]

Lasers Surg. Med. (3)

M. R. Keenan, S. J. Leung, P. S. Rice, R. A. Wall, and J. K. Barton, “Dual optical modality endoscopic imaging of cancer development in the mouse colon,” Lasers Surg. Med. 47(1), 30–39 (2015).
[Crossref] [PubMed]

N. Rajaram, A. Gopal, X. Zhang, and J. W. Tunnell, “Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy,” Lasers Surg. Med. 42(7), 680–688 (2010).
[Crossref] [PubMed]

N. Rajaram, J. S. Reichenberg, M. R. Migden, T. H. Nguyen, and J. W. Tunnell, “Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer,” Lasers Surg. Med. 42(10), 716–727 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Photonics News (1)

A. Siegman, “Fresnel reflection, lenserfreflection and evanescent gain,” Opt. Photonics News 21(1), 38–45 (2010).
[Crossref]

Pathology (1)

P. Sharma and E. Montgomery, “Gastrointestinal dysplasia,” Pathology 45(3), 273–285 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

S. C. Kanick, D. J. Robinson, H. J. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth,” Phys. Med. Biol. 54(22), 6991–7008 (2009).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[Crossref] [PubMed]

PLoS One (2)

M. K. Quinn, T. C. Bubi, M. C. Pierce, M. K. Kayembe, D. Ramogola-Masire, and R. Richards-Kortum, “High-resolution microendoscopy for the detection of cervical neoplasia in low-resource settings,” PLoS One 7(9), e44924 (2012).
[Crossref] [PubMed]

S. P. Prieto, A. J. Powless, J. W. Boice, S. G. Sharma, and T. J. Muldoon, “Proflavine Hemisulfate as a Fluorescent Contrast Agent for Point-of-Care Cytology,” PLoS One 10(5), e0125598 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

G. J. Greening, A. J. Powless, J. A. Hutcheson, S. P. Prieto, A. A. Majid, and T. J. Muldoon, “Design and validation of a diffuse reflectance and spectroscopic microendoscope with poly(dimethylsiloxane)-based phantoms,” Proc. SPIE 9332, 93320R (2015).

M. Wang, S. Shen, J. Yang, E. Bong, and R. Xu, “3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue,” Proc. SPIE 8945, 894509 (2014).

Quantum Electron. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. S. Rubtsov, E. A. Kolesnikova, and V. V. Tuchin, “Optical properties of human colon tissues in the 350 – 2500 nm spectral range,” Quantum Electron. 44(8), 779–784 (2014).
[Crossref]

Science (2)

A. R. Moser, H. C. Pitot, and W. F. Dove, “A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse,” Science 247(4940), 322–324 (1990).
[Crossref] [PubMed]

L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould, and W. F. Dove, “Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene,” Science 256(5057), 668–670 (1992).
[Crossref] [PubMed]

World J. Gastroenterol. (1)

Y. Zhang, “Epidemiology of esophageal cancer,” World J. Gastroenterol. 19(34), 5598–5606 (2013).
[Crossref] [PubMed]

Other (3)

S. A. Prahl, Optical Absorption of Hemoglobin (O.M.L. Center, 1999).

S. L. Jacques, Optical Absorption of Melanin (O.M.L. Center, 2015).

H. Shangguan, S. A. Prahl, S. L. Jacques, L. W. Casperson, and K. E. Gregory, “Pressure Effects on Soft Tissues Monitored by Changes in Tissue Optical Properties,” SPIE Proceedings of Laser-Tissue Interaction IX, 3254, 366–371 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fiber-optic probe showing (a) the full length (4 ft.) of the probe with the single bundle at the distal end and splitting into six individual bundles at the proximal end, (b) a schematic of the probe tip with the central 1 mm image fiber (#6) surrounded by five 200 µm multimode fibers (#1-5) separated by 25°. SDS between fiber #1 and the four adjacent fibers (#2-5) are 374, 730, 1051, and 1323 µm, respectively, and (c) close-up of the distal end of the fiber-optic probe (scale bar = 2 mm).
Fig. 2
Fig. 2 The trimodal microendoscope showing (a) a schematic illustrating major components. 455 nm light passes through a 460 nm short pass excitation filter (Ex). Emitted signal passes through a 10X objective, 475 nm dichroic mirror (DCM1), 525/40 nm emission filter (Em1), and into a camera (Cam 1). 635 nm sDRIM signal passes through the objective lens, 475 (DCM1) and 590 nm dichroic mirrors (DCM2), 610 long pass filter (Em2), and into a camera (Cam 2). An optical fiber switch delivers reflected broadband light from the tungsten halogen lamp to a spectrometer. Finally, (b) shows a close-up of the optical components and (c) shows the optical components and custom LabVIEW software acquiring data from a hybrid cell phantom.
Fig. 3
Fig. 3 Images of group 3/element 3 (linewidth = 49.50 µm) of a positive 1951 USAF resolution test target taken with a 10X/0.30 NA infinity-corrected objective lens and tube lenses with focal lengths of (a) 50 mm, (b) 100 mm, and (c) 150 mm. The yellow arrow points to the same target on each image.
Fig. 4
Fig. 4 Characterization of the 374 μm SDS sDRS modality of the trimodal instrumentation. This figure shows (a) a LUT (black mesh) generated by a set of 10 calibration phantoms describing reflectance (R) as a function of μs’ (4.4-27 cm−1) and μa (0-27 cm−1) with superimposed reflectance data (red dots) from the 27 validation phantoms. Discrepancies between the LUT and validation phantoms contribute to percent error in the ability of the LUT to extract optical properties. Additionally, this figure shows (b) extracted (via LUT inverse model) vs. theoretical (via Mie Theory) μs’ of the 27 validation phantoms with a perfect fit line (red), and (c) extracted (via LUT inverse model) vs. theoretical (via Beer’s Law) μa of the 27 validation phantoms with a perfect fit line (red). Discrepancies between extracted and theoretical values contribute to percent error.
Fig. 5
Fig. 5 Demonstration of the three modalities showing data from the hybrid cell phantoms containing (a-c) one or (d-f) two layers. The figure shows (a, d) a SolidWorks representation of the single and double layer hybrid cell phantoms (with white arrows pointing at layers), (b, e) enhanced high-resolution fluorescence images after topical staining of MDA-MB-468 breast adenocarcinoma cells with proflavine (scale bar = 225 µm), (c, f) sDRIM data (scale bar = 225 µm, color bar = 0-130), (g) quantification of the sDRIM data taken across the face of the image fiber (400-1,300 µm SDS from laser source), (h) broadband sDRS data (374 µm SDS), and (i) broadband sDRS data (730 µm SDS).
Fig. 6
Fig. 6 Demonstration of technique showing data from (a-c) human healthy skin tissue and (d-f) adjacent melanocytic nevus. The figure shows (a, d) a digital image of the healthy skin and adjacent melanocytic nevus (scale bar = 1 mm), (b, e) cropped and enhanced high-resolution fluorescence images after topical staining with pyranine-derived highlighter ink (scale bar = 50 µm), (c, f) sDRIM data (scale bar = 225 µm, color bar = 0-225), (g) quantification of the sDRIM data taken across the face of the image fiber (400-1,300 µm SDS from 635 nm laser source), (h) broadband sDRS data (374 µm SDS), and (i) broadband sDRS data (730 µm SDS). Raw data are shown as dots and the LUT-based inverse model fits are shown as a curve.
Fig. 7
Fig. 7 Demonstration of the three modalities showing data from a 16-week old wild-type (C57BL/6J) male mouse. The figure shows (a) digital image of the 4-5 cm colon tissue (lumen side facing up, scale bar = 5 mm), (b) histology of an adjacent section (scale bar = 50 µm), (c) cropped and enhanced high-resolution fluorescence image after topical staining with 0.01% w/v proflavine (scale bar = 50 µm), (d) sDRIM data (scale bar = 225 µm, color bar = 0-200), (e) quantification of the sDRIM data taken across the face of the image fiber (400-1,300 µm SDS from 635 nm laser source), (f) broadband sDRS data (374 µm SDS), and (g) broadband sDRS data (730 µm SDS).

Tables (3)

Tables Icon

Table 1 Specifications for non-biological components of hybrid tissue-simulating phantoms

Tables Icon

Table 2 System specifications for the high-resolution modality with different tube lenses

Tables Icon

Table 3 System specifications for the sDRS modality with two source-detector separations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R( μm )= D fibers ( μm fiber )fiber
M= N pixel ( pixel μm ) W pixel ( μm pixel )
FOV( % )= A sample ( μ m 2 ) A maximum ( μ m 2 )
F sampling = D fiber ( μm fiber ) N pixel ( pixel μm )
D s ( μ s ' , μ a )= 1 2 [ d I max ( μ s ' , μ a ) ]

Metrics