Abstract

We demonstrate a pressure sensor based on deformation of a periodically nanostructured Bragg grating waveguide on a flexible 50 µm polydimethylsiloxane membrane and remote optical read out. A pressure change causes deformation of this 2 mm diameter photonic crystal membrane sealing a reference volume. The resulting shift of the guided mode resonances is observed by a remote camera as localized color change. Crossed polarization filters are employed for enhancing the visibility of the guided mode resonances. Pressure values are calculated from the intensity change in the green color channel using a calibration curve in the range of 2000 Pa to 4000 Pa. A limit of detection (LOD) of 160 Pa is estimated. This LOD combined with the small size of the sensor and its biocompatibility render it promising for application as an implantable intraocular pressure sensor.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visual device for pressure measurement using photonic crystal slabs

Yousef Nazirizadeh, Torben Karrock, and Martina Gerken
Opt. Lett. 37(15) 3081-3083 (2012)

Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection

Sabrina Jahns, Marion Bräu, Björn-Ole Meyer, Torben Karrock, Sören B. Gutekunst, Lars Blohm, Christine Selhuber-Unkel, Raymund Buhmann, Yousef Nazirizadeh, and Martina Gerken
Biomed. Opt. Express 6(10) 3724-3736 (2015)

Photonic-crystal fiber-based pressure sensor for dual environment monitoring

Jonas H. Osório, Juliano G. Hayashi, Yovanny A. V. Espinel, Marcos A. R. Franco, Miguel V. Andrés, and Cristiano M. B. Cordeiro
Appl. Opt. 53(17) 3668-3672 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Mokwa, “Medical implants based on microsystems,” Meas. Sci. Technol. 18(5), R47–R57 (2007).
    [Crossref]
  2. N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
    [Crossref]
  3. P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
    [Crossref]
  4. I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
    [Crossref] [PubMed]
  5. Y. Nazirizadeh, T. Karrock, and M. Gerken, “Visual device for pressure measurement using photonic crystal slabs,” Opt. Lett. 37(15), 3081–3083 (2012).
    [Crossref] [PubMed]
  6. H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
    [Crossref]
  7. H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
    [Crossref]
  8. A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
    [Crossref]
  9. L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
    [Crossref]
  10. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  11. G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).
  12. T. Karrock, J. Schmalz, Y. Nazirizadeh, and M. Gerken, “Fabrication of flexible photonic crystal slabs,” MRS Proc. 1698, (2014).
    [Crossref]
  13. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
    [Crossref]
  14. Y. Nazirizadeh, J. Müller, U. Geyer, D. Schelle, E. B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express 16(10), 7153–7160 (2008).
    [Crossref] [PubMed]
  15. A. Pradana and M. Gerken, “Photonic crystal slabs in flexible organic light-emitting diodes,” Photon. Res. 3(2), 32–37 (2015).
    [Crossref]
  16. S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
    [Crossref]
  17. M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18(6), 067001 (2008).
    [Crossref]
  18. I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (2)

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
[Crossref]

2009 (1)

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

2008 (2)

2007 (2)

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

W. Mokwa, “Medical implants based on microsystems,” Meas. Sci. Technol. 18(5), R47–R57 (2007).
[Crossref]

2006 (1)

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

2005 (1)

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

2003 (2)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

2001 (1)

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

1994 (1)

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

Agrawal, R.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Almeida, R. M.

L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
[Crossref]

Andrew, P.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Araci, I. E.

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

Arsenault, A. C.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Barnes, W. L.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Bertolotti, J.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Cademartiri, L.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Chang, S. P.

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

Chen, P.-J.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Choi, S.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Clark, T. J.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

de Jong, P. T. V. M.

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

Dielemans, I.

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

Eddings, M. A.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18(6), 067001 (2008).
[Crossref]

Foland, S.

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

Fortes, L. M.

L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
[Crossref]

Fudouzi, H.

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Gale, B. K.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18(6), 067001 (2008).
[Crossref]

Ge, J.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Gerken, M.

Geyer, U.

Gonçalves, M. C.

L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
[Crossref]

Grobbee, D. E.

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

Hofman, A.

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

Humayun, M. S.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

John, S.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Johnson, M. A.

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18(6), 067001 (2008).
[Crossref]

Jory, M. J.

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Karnik, R. N.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Karrock, T.

Kim, H.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kim, J.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Kitaev, V.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Kley, E. B.

Kwon, S.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, H.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Lee, J.-B.

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

Lemmer, U.

Majumdar, A.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Mandel, Y.

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

Manners, I.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Meng, E.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Mokwa, W.

W. Mokwa, “Medical implants based on microsystems,” Meas. Sci. Technol. 18(5), R47–R57 (2007).
[Crossref]

Müller, J.

Nazirizadeh, Y.

Ozin, G.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Park, W.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Pradana, A.

Quake, S. R.

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

Rodger, D. C.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Saati, S.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Samuel, I. D. W.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Sapienza, R.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Satyanarayana, S.

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

Schelle, D.

Su, B.

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

Tai, Y.-C.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Tünnermann, A.

Turnbull, G. A.

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Varma, R.

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Vekris, E.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Vingerling, J. R.

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

von Freymann, G.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Wang, R. Z.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Wiersma, D.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Wong, S.

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Xia, Y.

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Xue, N.

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

Yin, Y.

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

I. Dielemans, J. R. Vingerling, A. Hofman, D. E. Grobbee, and P. T. V. M. de Jong, “Reliability of intraocular pressure measurement with the Goldmann applanation tonometer in epidemiological studies,” Graefes Arch. Clin. Exp. Ophthalmol. 232(3), 141–144 (1994).
[Crossref] [PubMed]

IEEE Sensors Proc. (1)

N. Xue, J.-B. Lee, S. Foland, and S. P. Chang, “Biocompatible polymeric wireless pressure sensor for intraocular pressure sensing application,” IEEE Sensors Proc. 1930, 1748–1751 (2011).
[Crossref]

J. Microelectromech. Syst. (1)

S. Satyanarayana, R. N. Karnik, and A. Majumdar, “Stamp-and-Stick Room-Temperature Bonding Technique for Microdevices,” J. Microelectromech. Syst. 14(2), 392–399 (2005).
[Crossref]

J. Micromech. Microeng. (2)

M. A. Eddings, M. A. Johnson, and B. K. Gale, “Determining the optimal PDMS–PDMS bonding technique for microfluidic devices,” J. Micromech. Microeng. 18(6), 067001 (2008).
[Crossref]

P.-J. Chen, D. C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M. S. Humayun, and Y.-C. Tai, “Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing,” J. Micromech. Microeng. 17(10), 1931–1938 (2007).
[Crossref]

Langmuir (1)

H. Fudouzi and Y. Xia, “Colloidal crystals with tunable colors and their use as photonic papers,” Langmuir 19(23), 9653–9660 (2003).
[Crossref]

Meas. Sci. Technol. (1)

W. Mokwa, “Medical implants based on microsystems,” Meas. Sci. Technol. 18(5), R47–R57 (2007).
[Crossref]

Nat. Mater. (1)

A. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5(3), 179–184 (2006).
[Crossref]

Nat. Med. (1)

I. E. Araci, B. Su, S. R. Quake, and Y. Mandel, “An implantable microfluidic device for self-monitoring of intraocular pressure,” Nat. Med. 20(9), 1074–1078 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, H. Lee, W. Park, Y. Yin, and S. Kwon, “Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal,” Nat. Photonics 3(9), 534–540 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (Amst) (1)

L. M. Fortes, M. C. Gonçalves, and R. M. Almeida, “Flexible photonic crystals for strain sensing,” Opt. Mater. (Amst) 33(3), 408–412 (2011).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Photonic mode dispersion of a two-dimensional distributed feedback polymer laser,” Phys. Rev. B 67(16), 165107 (2003).
[Crossref]

Phys. Rev. B. (1)

G. A. Turnbull, P. Andrew, M. J. Jory, W. L. Barnes, and I. D. W. Samuel, “Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser,” Phys. Rev. B. 64, 125122 (2001).

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Other (1)

T. Karrock, J. Schmalz, Y. Nazirizadeh, and M. Gerken, “Fabrication of flexible photonic crystal slabs,” MRS Proc. 1698, (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) 3D schematic of the pressure sensor based on deformation of a linearly nanostructured membrane that seals a reference volume. The pressure is deduced by normal incidence color imaging of the membrane. (b) Schematic crosssection of the nanostructured PDMS membrane with a high refractive index layer of TiO2 nanoparticles forming a photonic crystal slab waveguide. Under illumination a quasi-guided mode is excited. The mode is scattered in transmission and reflection. Exemplary, the light in two scattering directions is shown. The scattered light is detected by a camera detector (The spatial offset of excitation and detector is shown for clarity. In the measurement both are aligned on the same optical axis.) (c) Schematic of the photonic crystal slab under strain. The increased period causes a red shift of the light scattered in the detector direction. (d) Schematic of the tilted photonic crystal also producing a changed color on the detector.
Fig. 2
Fig. 2 (a-c) Fabrication process of the flexible photonic crystal membrane and the supporting structure (top) as well as the lid (bottom). (d) Schematic and photograph of assembled sensor.
Fig. 3
Fig. 3 Scanning electron microscopy (SEM) scan of a focused ion beam (FIB) cut in the nanostructured PDMS membrane and the TiO2 particle layer. The TiO2 layer can be seen as a dark 95 nm to 200 nm streak above of the PDMS nanostructure. The layers of the PDMS substrate and the TiO2-particles are non conductive and therefore the SEM cannot capture features that are as small as the average particle size (~21 nm) which is why the individual particles are not visible in the SEM scan. The highlighting of the nanostructure is caused by charging effects at the PDMS material border during the SEM scan.
Fig. 4
Fig. 4 (a) Experimental setup for transmission measurements. (b) Schematic of angle definitions.
Fig. 5
Fig. 5 Spectra of the flexible photonic crystal slab observed between crossed polarization filters for φ = 0° under (a) tilting and (b) straining. The image color for each tilt and strain condition is displayed above.
Fig. 6
Fig. 6 (a-e) Spectra as a function of observation angle θ for different angles φ. The experimental data is overlayed with calculated mode positions (black lines) obtained from Eq. (1) assuming neff = 1.4. (f) Stitched polar plot of color photographs at different angles θ and φ.
Fig. 7
Fig. 7 (a) Measurement setup for experiments with varying pressure is shown. The sensor is placed in a controllable pressure camber and viewed using a transmission microscope. The chamber is placed between crossed polarization filters to suppress the transmission light except for the guided mode resonance. It can be analyzed by a spectrometer or camera.
Fig. 8
Fig. 8 Sensitivity of the three color channels of a Nikon D300 camera (similar chip to the used D5100) (dotted lines). Guided mode resonances (GMR) for φ = 0° and θ = 0° (green curve) and for φ = 0° and θ = 15° (purple curve).
Fig. 9
Fig. 9 Top: Experimentally observed color patterns with increasing pressure due to the deformation of the circular sensor membrane under increasing pressure. Bottom: Schematic (and exaggerated) section through the membrane showing the increasing deformation. The reduction of the reference volume due to the deformation is small enough to be neglected.
Fig. 10
Fig. 10 Calibration curve for the translation of the camera’s green channel intensity of the sensor area to pressure values interpolated from measurement points.
Fig. 11
Fig. 11 Comparison between measured values of pressure derived from the translation of the green channel’s intensity to reference values measured with the digital pressure sensor.
Fig. 12
Fig. 12 Schematic of an implantable intraocular pressure sensor integrated with an artificial lens implant. The flexible photonic crystal membrane is observed from the outside with a camera through a circular-polarization filter. From the color pattern on photos the pressure may be calculated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k mode = ( m k Gx k 0 sinθcosφ ) 2 + ( k 0 sinθsinφ ) 2
ε= s d 1= θ max sin( θ max ) 1

Metrics