Abstract

Separation of skin epidermis from the dermis by suction blistering has been used with high success rate for autologous skin epidermal grafting in burns, chronic wounds and vitiligo transplantation treatment. Although commercial products that achieve epidermal grafting by suction blistering are presently available, there is still limited knowledge and understanding on the dynamic process of epidermal-dermal separation during suction blistering. In this report we integrated a suction system to an Optical Coherence Tomography (OCT) which allowed for the first time, real-time imaging of the suction blistering process in human skin. We describe in this report the evolution of a suction blister where the growth is modeled with a Boltzmann sigmoid function. We further investigated the relationship between onset and steady-state blister times, blister growth rate, applied suction pressure and applied local skin temperature. Our results show that while the blister time is inversely proportional to the applied suction pressure, the relationship between the blister time and the applied temperature is described by an exponential decay.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage

Zongxi Li, Emmanuel Roussakis, Pieter G. L. Koolen, Ahmed M. S. Ibrahim, Kuylhee Kim, Lloyd F. Rose, Jesse Wu, Alexander J. Nichols, Yunjung Baek, Reginald Birngruber, Gabriela Apiou-Sbirlea, Robina Matyal, Thomas Huang, Rodney Chan, Samuel J. Lin, and Conor L. Evans
Biomed. Opt. Express 5(11) 3748-3764 (2014)

Terahertz reflectometry of burn wounds in a rat model

M. Hassan Arbab, Trevor C. Dickey, Dale P. Winebrenner, Antao Chen, Mathew B. Klein, and Pierre D. Mourad
Biomed. Opt. Express 2(8) 2339-2347 (2011)

Combined reflectance confocal microscopy/optical coherence tomography imaging for skin burn assessment

Nicusor Iftimia, R. Daniel Ferguson, Mircea Mujat, Ankit H. Patel, Ellen Ziyi Zhang, William Fox, and Milind Rajadhyaksha
Biomed. Opt. Express 4(5) 680-695 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Serena, “The increasing role of epidermal grafting utilizing a novel harvesting system in chronic wounds,” Wounds 27(2), 26–30 (2015).
    [PubMed]
  2. S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
    [Crossref] [PubMed]
  3. P. Unna, “Zur Anatomie der Blasenbildung an der menschlichen Haut,” Vjschr. Derm. Syph. 5, 1 (1878).
  4. U. Kiistala and K. K. Mustakallio, “In-Vivo Separation of Epidermis by Production of Suction Blisters,” Lancet 283(7348), 1444–1445 (1964).
    [Crossref] [PubMed]
  5. K. Bork, “Physical Forces in Blister Formation. The Role of Colloid Osmotic Pressure and of Total Osmolality in Fluid Migration into the Rising Blister,” J. Invest. Dermatol. 71(3), 209–212 (1978).
    [Crossref] [PubMed]
  6. L. B. Lowe and J. C. van der Leun, “Suction blisters and dermal-epidermal adherence,” J. Invest. Dermatol. 50(4), 308–314 (1968).
    [PubMed]
  7. J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
    [Crossref]
  8. M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
    [Crossref] [PubMed]
  9. E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
    [Crossref] [PubMed]
  10. J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
    [Crossref] [PubMed]
  11. L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
    [Crossref] [PubMed]

2015 (2)

T. E. Serena, “The increasing role of epidermal grafting utilizing a novel harvesting system in chronic wounds,” Wounds 27(2), 26–30 (2015).
[PubMed]

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

2007 (1)

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

1999 (1)

S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
[Crossref] [PubMed]

1978 (1)

K. Bork, “Physical Forces in Blister Formation. The Role of Colloid Osmotic Pressure and of Total Osmolality in Fluid Migration into the Rising Blister,” J. Invest. Dermatol. 71(3), 209–212 (1978).
[Crossref] [PubMed]

1975 (1)

E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
[Crossref] [PubMed]

1974 (2)

J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
[Crossref] [PubMed]

J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
[Crossref]

1968 (1)

L. B. Lowe and J. C. van der Leun, “Suction blisters and dermal-epidermal adherence,” J. Invest. Dermatol. 50(4), 308–314 (1968).
[PubMed]

1964 (1)

U. Kiistala and K. K. Mustakallio, “In-Vivo Separation of Epidermis by Production of Suction Blisters,” Lancet 283(7348), 1444–1445 (1964).
[Crossref] [PubMed]

1878 (1)

P. Unna, “Zur Anatomie der Blasenbildung an der menschlichen Haut,” Vjschr. Derm. Syph. 5, 1 (1878).

Beerens, E. D.

J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
[Crossref] [PubMed]

Beerens, E. G.

E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
[Crossref] [PubMed]

Beerens, E. G. J.

J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
[Crossref]

Blume-Peytavi, U.

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

Bork, K.

K. Bork, “Physical Forces in Blister Formation. The Role of Colloid Osmotic Pressure and of Total Osmolality in Fluid Migration into the Rising Blister,” J. Invest. Dermatol. 71(3), 209–212 (1978).
[Crossref] [PubMed]

Denda, M.

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

Fukumi-Tominaga, T.

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

Gupta, S.

S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
[Crossref] [PubMed]

S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
[Crossref] [PubMed]

Hatje, L. K.

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

Kiistala, U.

U. Kiistala and K. K. Mustakallio, “In-Vivo Separation of Epidermis by Production of Suction Blisters,” Lancet 283(7348), 1444–1445 (1964).
[Crossref] [PubMed]

Kottner, J.

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

Lowe, L. B.

J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
[Crossref] [PubMed]

J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
[Crossref]

L. B. Lowe and J. C. van der Leun, “Suction blisters and dermal-epidermal adherence,” J. Invest. Dermatol. 50(4), 308–314 (1968).
[PubMed]

Mustakallio, K. K.

U. Kiistala and K. K. Mustakallio, “In-Vivo Separation of Epidermis by Production of Suction Blisters,” Lancet 283(7348), 1444–1445 (1964).
[Crossref] [PubMed]

Richter, C.

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

Serena, T. E.

T. E. Serena, “The increasing role of epidermal grafting utilizing a novel harvesting system in chronic wounds,” Wounds 27(2), 26–30 (2015).
[PubMed]

Shroff, S.

S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
[Crossref] [PubMed]

Slot, J. W.

E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
[Crossref] [PubMed]

Sokabe, T.

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

Tominaga, M.

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

Unna, P.

P. Unna, “Zur Anatomie der Blasenbildung an der menschlichen Haut,” Vjschr. Derm. Syph. 5, 1 (1878).

van der Leun, J. C.

E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
[Crossref] [PubMed]

J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
[Crossref] [PubMed]

J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
[Crossref]

L. B. Lowe and J. C. van der Leun, “Suction blisters and dermal-epidermal adherence,” J. Invest. Dermatol. 50(4), 308–314 (1968).
[PubMed]

Br. J. Dermatol. (1)

L. K. Hatje, C. Richter, U. Blume-Peytavi, and J. Kottner, “Blistering time as a parameter for the strength of dermoepidermal adhesion: a systematic review and meta-analysis,” Br. J. Dermatol. 172(2), 323–330 (2015).
[Crossref] [PubMed]

Int. J. Dermatol. (1)

S. Gupta, S. Shroff, and S. Gupta, “Modified technique of suction blistering for epidermal grafting in vitiligo,” Int. J. Dermatol. 38(4), 306–309 (1999).
[Crossref] [PubMed]

J. Invest. Dermatol. (6)

K. Bork, “Physical Forces in Blister Formation. The Role of Colloid Osmotic Pressure and of Total Osmolality in Fluid Migration into the Rising Blister,” J. Invest. Dermatol. 71(3), 209–212 (1978).
[Crossref] [PubMed]

L. B. Lowe and J. C. van der Leun, “Suction blisters and dermal-epidermal adherence,” J. Invest. Dermatol. 50(4), 308–314 (1968).
[PubMed]

J. C. van der Leun, L. B. Lowe, and E. G. J. Beerens, “The influence of skin temperature on dermal-epidermal adherence: evidence compatible with a highly viscous bond,” J. Invest. Dermatol. 62(1), 42–46 (1974).
[Crossref]

M. Denda, T. Sokabe, T. Fukumi-Tominaga, and M. Tominaga, “Effects of skin surface temperature on epidermal permeability barrier homeostasis,” J. Invest. Dermatol. 127(3), 654–659 (2007).
[Crossref] [PubMed]

E. G. Beerens, J. W. Slot, and J. C. van der Leun, “Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum: an electron microscopic study,” J. Invest. Dermatol. 65(6), 513–521 (1975).
[Crossref] [PubMed]

J. C. van der Leun, E. D. Beerens, and L. B. Lowe, “Repair of dermal-epidermal adherence: a rapid process observed in experiments on blistering with interrupted suction,” J. Invest. Dermatol. 63(5), 397–401 (1974).
[Crossref] [PubMed]

Lancet (1)

U. Kiistala and K. K. Mustakallio, “In-Vivo Separation of Epidermis by Production of Suction Blisters,” Lancet 283(7348), 1444–1445 (1964).
[Crossref] [PubMed]

Vjschr. Derm. Syph. (1)

P. Unna, “Zur Anatomie der Blasenbildung an der menschlichen Haut,” Vjschr. Derm. Syph. 5, 1 (1878).

Wounds (1)

T. E. Serena, “The increasing role of epidermal grafting utilizing a novel harvesting system in chronic wounds,” Wounds 27(2), 26–30 (2015).
[PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (1521 KB)      movie of the blister formation

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup showing the OCT system, home-built OCT-suction coupler and the skin sample.
Fig. 2
Fig. 2 Different phases of the blister formation process. During the first 15 minutes skin doming was observed (A to C). At 21 minutes the first cleft is observed (D) which grew in size (D to F). A steady-state phase is achieved at 45 minutes (G). A movie of the blister formation is shown in I with a speed factor of ~1000 × (see Visualization 1).
Fig. 3
Fig. 3 Initiation of microblisters from multiple sites (yellow arrows) and eventual mergence at 7 min and 11 min, respectively.
Fig. 4
Fig. 4 A: Typical blister growth curves showing normalized blister area evolution for different pressures at ~21°C. B: Dependence of the onset and steady-state blister times, t10 (black squares) and t90 (red circles), respectively, on the suction pressure at ~21°C. The blister growth rate (blue triangles) shows good fit with an exponential function (blue line) against the suction pressure. For clarity, only positive or negative error bars are shown for the data.
Fig. 5
Fig. 5 A: Typical blister growth curves showing normalized blister area evolution for different temperatures using a suction pressure of 600 mmHg. B: Dependence of the onset and steady-state blister times, t10 (black squares) and t90 (red circles), respectively, on the local skin temperature using a suction pressure of 600 mmHg. The blister times fit with exponential decay curves (black and red lines). The blister growth rate (blue triangles) shows positive linear relationship with skin temperature.

Metrics