Abstract

In diffuse optical tomography (DOT), real-time image reconstruction of oxy- and deoxy-haemoglobin changes occurring in the brain could give valuable information in clinical care settings. Although non-linear reconstruction techniques could provide more accurate results, their computational burden makes them unsuitable for real-time applications. Linear techniques can be employed under the assumption that the expected change in absorption is small. Several approaches exist, differing primarily in their handling of regularization and the noise statistics. In real experiments, it is impossible to compute the true noise statistics, because of the presence of physiological oscillations in the measured data. This is even more critical in real-time applications, where no off-line filtering and averaging can be performed to reduce the noise level. Therefore, many studies substitute the noise covariance matrix with the identity matrix. In this paper, we examined two questions: does using the noise model with realistic, imperfect data yield an improvement in image quality compared to using the identity matrix; and what is the difference in quality between online and offline reconstructions. Bespoke test data were created using a novel process through which simulated changes in absorption were added to real resting-state DOT data. A realistic multi-layer head model was used as the geometry for the reconstruction. Results validated our assumptions, highlighting the validity of computing the noise statistics from the measured data for online image reconstruction, which was performed at 2 Hz. Our results can be directly extended to a real application where real-time imaging is required.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantification and normalization of noise variance with sparsity regularization to enhance diffuse optical tomography

Jixing Yao, Fenghua Tian, Yothin Rakvongthai, Soontorn Oraintara, and Hanli Liu
Biomed. Opt. Express 6(8) 2961-2979 (2015)

Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system

Danial Chitnis, Robert J. Cooper, Laura Dempsey, Samuel Powell, Simone Quaggia, David Highton, Clare Elwell, Jeremy C. Hebden, and Nicholas L. Everdell
Biomed. Opt. Express 7(10) 4275-4288 (2016)

Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors

Farras Abdelnour, Christopher Genovese, and Theodore Huppert
Biomed. Opt. Express 1(4) 1084-1103 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
    [Crossref] [PubMed]
  2. A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
    [Crossref] [PubMed]
  3. S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
    [PubMed]
  4. H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
    [Crossref] [PubMed]
  5. D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
    [Crossref] [PubMed]
  6. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28(21), 2061–2063 (2003).
    [Crossref] [PubMed]
  7. B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
    [Crossref] [PubMed]
  8. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [Crossref]
  9. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [Crossref] [PubMed]
  10. D. A. Boas, M. A. Franceschini, A. Dunn, and G. Strangman, “Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography,” in In Vivo Optical Imaging of Brain Function, R. Frostig, ed., 2nd ed. (CRC Press, 2009).
  11. G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
    [Crossref] [PubMed]
  12. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
    [Crossref] [PubMed]
  13. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
    [Crossref] [PubMed]
  14. J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
    [Crossref] [PubMed]
  15. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
    [Crossref] [PubMed]
  16. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]
  17. M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
    [Crossref] [PubMed]
  18. T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
    [Crossref] [PubMed]
  19. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
    [Crossref] [PubMed]
  20. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
    [Crossref] [PubMed]
  21. R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
    [Crossref]
  22. P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
    [Crossref] [PubMed]
  23. R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
    [Crossref] [PubMed]
  24. K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
    [Crossref] [PubMed]
  25. D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
    [Crossref] [PubMed]
  26. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
    [Crossref] [PubMed]
  27. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
    [Crossref] [PubMed]
  28. C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
    [Crossref] [PubMed]
  29. T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
    [Crossref] [PubMed]
  30. C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A 26(5), 1277–1290 (2009).
    [Crossref] [PubMed]
  31. R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
    [Crossref] [PubMed]
  32. L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
    [Crossref] [PubMed]
  33. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
    [PubMed]
  34. L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
    [Crossref] [PubMed]
  35. S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
    [Crossref] [PubMed]
  36. Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.
    [Crossref]
  37. N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
    [Crossref]
  38. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
    [Crossref] [PubMed]
  39. A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45(19), 4747–4755 (2006).
    [Crossref] [PubMed]
  40. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950 (1999).
    [Crossref] [PubMed]
  41. M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
    [Crossref] [PubMed]
  42. “Synthetic data,” www.ucl.ac.uk/medphys/research/borl/intro/data .
  43. G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
    [Crossref] [PubMed]
  44. H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
    [Crossref] [PubMed]
  45. A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
    [Crossref] [PubMed]

2015 (4)

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

2014 (6)

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
[Crossref] [PubMed]

2013 (3)

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
[Crossref] [PubMed]

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

2012 (5)

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
[Crossref] [PubMed]

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

2011 (2)

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

2010 (2)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
[Crossref] [PubMed]

2009 (8)

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A 26(5), 1277–1290 (2009).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

2008 (2)

R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
[Crossref]

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref] [PubMed]

2007 (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (4)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
[Crossref] [PubMed]

2003 (2)

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28(21), 2061–2063 (2003).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

2000 (1)

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

1999 (1)

Airantzis, D.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Arridge, S.

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A 26(5), 1277–1290 (2009).
[Crossref] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

Austin, T.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Bale, G.

Banga, A.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

Barnett, A. H.

Benali, H.

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Berger, A.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref] [PubMed]

Bevilacqua, F.

Boas, D. A.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45(19), 4747–4755 (2006).
[Crossref] [PubMed]

D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt. 44(10), 1957–1968 (2005).
[Crossref] [PubMed]

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28(21), 2061–2063 (2003).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.
[Crossref]

Brigadoi, S.

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Brooks, D. H.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Caffini, M.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Cai, D. S.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Carmant, L.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Carney, P. R.

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Cooper, R. J.

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Correia, T.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

Culver, J. P.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28(21), 2061–2063 (2003).
[Crossref] [PubMed]

Custo, A.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, and D. A. Boas, “Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging,” Appl. Opt. 45(19), 4747–4755 (2006).
[Crossref] [PubMed]

Dale, A. M.

Dan, H.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Dan, I.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Dehaes, M.

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Dehghani, H.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Delpy, D. T.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Dempsey, L.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Dempsey, L. A.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

Depeursinge, C.

Diamond, S. G.

K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
[Crossref] [PubMed]

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

DiMarzio, C. A.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Dubb, J.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Edwards, A.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Eggebrecht, A. T.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Endoh, R.

R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
[Crossref]

Everdell, N.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Everdell, N. L.

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Fang, Q.

K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
[Crossref] [PubMed]

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1(1), 165–175 (2010).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.
[Crossref]

Ferradal, S. L.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Fischl, B.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Florea, O.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Franceschini, M. A.

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Fujii, M.

R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
[Crossref]

Fujita, A.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Gagnon, L.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Gaudette, R. J.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Gaudette, T.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Gibson, A.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

Gibson, A. P.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

C. Panagiotou, S. Somayajula, A. P. Gibson, M. Schweiger, R. M. Leahy, and S. R. Arridge, “Information theoretic regularization in diffuse optical tomography,” J. Opt. Soc. Am. A 26(5), 1277–1290 (2009).
[Crossref] [PubMed]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Goldenholz, D.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Grebe, R.

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Greve, D. N.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Gross, J. D.

Grova, C.

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Habermehl, C.

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Hassanpour, M. S.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Haufe, S.

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

Hebden, J. C.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

Hershey, T.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Hillman, E. M. C.

Hiltunen, P.

P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
[Crossref] [PubMed]

Holder, D.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Holtze, S.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Huppert, T. J.

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

Inder, T. E.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

Jiang, H.

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

Kaipio, J. P.

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

Kaskhedikar, G.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Kazemi, K.

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Kilmer, M. E.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Koch, S. P.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Kolehmainen, V.

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

Kyutoku, Y.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Lassonde, M.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Leahy, R. M.

Lepore, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Lesage, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Li, Z.

G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
[Crossref] [PubMed]

Liao, S. M.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

Lina, J. M.

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Machado, A.

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Magee, E.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

Marquet, P.

Meek, J.

Mehnert, J.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Michell, A.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Miller, E. L.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

Mitra, S.

Moghaddam, H. A.

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

Müller, K.-R.

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

Nakayama, K.

R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
[Crossref]

Nguyen, D. K.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Obrig, H.

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Panagiotou, C.

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Pélégrini-Issac, M.

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Perdue, K.

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

Perdue, K. L.

K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
[Crossref] [PubMed]

Piguet, D.

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

Pouliot, P.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Powell, S.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

Prince, S. J. D.

P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
[Crossref] [PubMed]

Robertson, N.

Robichaux-Viehoever, A.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Roque, T.

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

Saager, R.

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref] [PubMed]

Safaie, J.

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

Sawan, M.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Schlaggar, B. L.

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Schmitz, C. H.

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

Schweiger, M.

Shimony, J. S.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

Siegel, A. M.

Singh, H.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Smyser, C. D.

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

Snyder, A. Z.

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Somayajula, S.

Srinivasan, S.

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Steinbrink, J.

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

Stott, J. J.

Strangman, G.

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

Strangman, G. E.

G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
[Crossref] [PubMed]

Tachtsidis, I.

Tizzard, A.

Tremblay, J.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Tromberg, B. J.

Tsuzuki, D.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Tullis, I. D. C.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Vaithianathan, T.

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Vannasing, P.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Wai Lee, C.

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Wallois, F.

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Watanabe, E.

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Wells, W.

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

Wells, W. M.

White, B. R.

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Zeff, B. W.

H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–D143 (2009).
[Crossref] [PubMed]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Zhang, Q.

G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

Zhou, J.

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (2)

Cereb. Cortex (1)

S. L. Ferradal, S. M. Liao, A. T. Eggebrecht, J. S. Shimony, T. E. Inder, J. P. Culver, and C. D. Smyser, “Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography,” Cereb. Cortex 93, bhu320 (2015).
[PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25(6), 711–732 (2009).
[Crossref] [PubMed]

Epilepsy Res. (1)

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99(1-2), 112–126 (2012).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

M. Dehaes, K. Kazemi, M. Pélégrini-Issac, R. Grebe, H. Benali, and F. Wallois, “Quantitative effect of the neonatal fontanel on synthetic near infrared spectroscopy measurements,” Hum. Brain Mapp. 34(4), 878–889 (2013).
[Crossref] [PubMed]

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[Crossref]

J. Biomed. Opt. (5)

B. R. White and J. P. Culver, “Quantitative evaluation of high-density diffuse optical tomography: in vivo resolution and mapping performance,” J. Biomed. Opt. 15(2), 026006 (2010).
[Crossref] [PubMed]

R. Saager and A. Berger, “Measurement of layer-like hemodynamic trends in scalp and cortex: implications for physiological baseline suppression in functional near-infrared spectroscopy,” J. Biomed. Opt. 13(3), 034017 (2008).
[Crossref] [PubMed]

M. Schweiger and S. Arridge, “The Toast++ software suite for forward and inverse modeling in optical tomography,” J. Biomed. Opt. 19(4), 040801 (2014).
[Crossref] [PubMed]

C. Habermehl, J. Steinbrink, K.-R. Müller, and S. Haufe, “Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography,” J. Biomed. Opt. 19(9), 096006 (2014).
[Crossref] [PubMed]

L. A. Dempsey, R. J. Cooper, T. Roque, T. Correia, E. Magee, S. Powell, A. P. Gibson, and J. C. Hebden, “Data-driven approach to optimum wavelength selection for diffuse optical imaging,” J. Biomed. Opt. 20(1), 016003 (2015).
[Crossref] [PubMed]

J. Neural Eng. (1)

J. Safaie, R. Grebe, H. A. Moghaddam, and F. Wallois, “Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system,” J. Neural Eng. 10(5), 056001 (2013).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

T. Zhang, J. Zhou, P. R. Carney, and H. Jiang, “Towards real-time detection of seizures in awake rats with GPU-accelerated diffuse optical tomography,” J. Neurosci. Methods 240, 28–36 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Image Comput. Comput. Assist. Interv. (1)

S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Physiological system identification with the Kalman filter in diffuse optical tomography,” Med. Image Comput. Comput. Assist. Interv. 8(2), 649–656 (2005).
[PubMed]

Nat. Photonics (1)

A. T. Eggebrecht, S. L. Ferradal, A. Robichaux-Viehoever, M. S. Hassanpour, H. Dehghani, A. Z. Snyder, T. Hershey, and J. P. Culver, “Mapping distributed brain function and networks with diffuse optical tomography,” Nat. Photonics 8(6), 448–454 (2014).
[Crossref] [PubMed]

Neuroimage (6)

L. Gagnon, K. Perdue, D. N. Greve, D. Goldenholz, G. Kaskhedikar, and D. A. Boas, “Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling,” Neuroimage 56(3), 1362–1371 (2011).
[Crossref] [PubMed]

C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” Neuroimage 59(4), 3201–3211 (2012).
[Crossref] [PubMed]

G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).
[Crossref] [PubMed]

R. J. Cooper, M. Caffini, J. Dubb, Q. Fang, A. Custo, D. Tsuzuki, B. Fischl, W. Wells, I. Dan, and D. A. Boas, “Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies,” Neuroimage 62(3), 1999–2006 (2012).
[Crossref] [PubMed]

H. Obrig, “NIRS in clinical neurology - a ‘promising’ tool?” Neuroimage 85(Pt 1), 535–546 (2014).
[Crossref] [PubMed]

A. Machado, J. M. Lina, J. Tremblay, M. Lassonde, D. K. Nguyen, F. Lesage, and C. Grova, “Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions,” Neuroimage 56(1), 114–125 (2011).
[Crossref] [PubMed]

Neuroimage Clin. (1)

H. Singh, R. J. Cooper, C. Wai Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, J. C. Hebden, and T. Austin, “Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: a case study,” Neuroimage Clin. 5, 256–265 (2014).
[Crossref] [PubMed]

Neurophotonics (1)

S. Brigadoi and R. J. Cooper, “How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy,” Neurophotonics 2(2), 025005 (2015).
[Crossref] [PubMed]

Neurosci. Res. (1)

D. Tsuzuki, D. S. Cai, H. Dan, Y. Kyutoku, A. Fujita, E. Watanabe, and I. Dan, “Stable and convenient spatial registration of stand-alone NIRS data through anchor-based probabilistic registration,” Neurosci. Res. 72(2), 163–171 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Rev. (1)

R. Endoh, M. Fujii, and K. Nakayama, “Depth-adaptive regularized reconstruction for reflection diffuse optical tomography,” Opt. Rev. 15(1), 51–56 (2008).
[Crossref]

Philos. Trans. A Math Phys. Eng. Sci. (1)

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Philos. Trans. A Math Phys. Eng. Sci. 367(1900), 3073–3093 (2009).
[Crossref] [PubMed]

Phys. Med. Biol. (5)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[Crossref] [PubMed]

P. Hiltunen, S. J. D. Prince, and S. Arridge, “A combined reconstruction-classification method for diffuse optical tomography,” Phys. Med. Biol. 54(21), 6457–6476 (2009).
[Crossref] [PubMed]

K. L. Perdue, Q. Fang, and S. G. Diamond, “Quantitative assessment of diffuse optical tomography sensitivity to the cerebral cortex using a whole-head probe,” Phys. Med. Biol. 57(10), 2857–2872 (2012).
[Crossref] [PubMed]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol. 45(4), 1051–1070 (2000).
[Crossref] [PubMed]

T. Correia, A. Banga, N. L. Everdell, A. P. Gibson, and J. C. Hebden, “A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom,” Phys. Med. Biol. 54(20), 6277–6286 (2009).
[Crossref] [PubMed]

PLoS One (1)

G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 12169–12174 (2007).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

N. L. Everdell, A. P. Gibson, I. D. C. Tullis, T. Vaithianathan, J. C. Hebden, and D. T. Delpy, “A frequency multiplexed near-infrared topography system for imaging functional activation in the brain,” Rev. Sci. Instrum. 76(9), 093705 (2005).
[Crossref]

Other (3)

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and grayscale images,” in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.
[Crossref]

“Synthetic data,” www.ucl.ac.uk/medphys/research/borl/intro/data .

D. A. Boas, M. A. Franceschini, A. Dunn, and G. Strangman, “Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography,” in In Vivo Optical Imaging of Brain Function, R. Frostig, ed., 2nd ed. (CRC Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Probe placement. Left: sources (red triangles) and detectors (blue circles) overlaid on the adult head model. Right: cross section of the head mesh, showing the 5 different tissue types.
Fig. 2
Fig. 2 Simulated absorption changes projected on the GM surface mesh.
Fig. 3
Fig. 3 Schematic of the synthetic data time line.
Fig. 4
Fig. 4 Original physiological optical density data in one of the subject (first column) and examples of synthetic optical density data at two different α values (in the last two columns). Signals have been divided according to source-detector separation for visualization purposes and only the first 3 distance ranges are shown. For each source-detector separation, 4 channels (each with a different colour) showing activation either in the left or right hemisphere have been selected and displayed. Grey lines indicate when perturbation changes were added in the synthetic data and are shown for visualization purposes only in the first row.
Fig. 5
Fig. 5 Examples of reconstructed absorption changes images on the GM surface mesh for the data displayed in Fig. 4 (α = 0.15 in the first row and α = 0.55 in the second) for one of the subject. These images were recovered using the variance as weighting matrix in the inversion of the Jacobian. Three time points of the signal were reconstructed: t = 9s (first column) where no absorption change was added, t = 14s (second column), which is half way between resting state and time of peak and t = 18s, which is the time of peak of the absorption change added in the right hemisphere.
Fig. 6
Fig. 6 Examples of computed SNRimage values for the reconstructed images on the GM surface mesh. Images were reconstructed from data scaled with two different values of α (α = 0.15 in blue crosses and α = 0.55 in red circles) at each time step. The crosses/circles give the mean between subjects while the error bars present the standard deviation. Absorption changes were added between 10 and 26 s in the right hemisphere and between 36 and 52 s in the left one, as in indicated by the grey bars.
Fig. 7
Fig. 7 Examples of metric values for two synthetic data series (α = 0.15 in blue crosses and α = 0.55 in red circles). Images were recovered for each time step in the head model using the variance matrix to weight the inversion of J. a) AreaFWHM, b) VolFWHM, c) PeakFWHM and d) Euclidean distance between the position of the true peak in absorption change and that recovered from the image. The black arrow indicates whether the true value was lower or larger than the estimated one.
Fig. 8
Fig. 8 Mean SNRimage across subjects as a function of α obtained reconstructing images with the variance approach (black squares), the covariance approach (magenta triangles) and the identity matrix approach (blue circles). The values obtained at the time of peak of the added absorption change in the left and right hemisphere are displayed. The shaded areas represent the standard deviation among subjects.
Fig. 9
Fig. 9 a) Mean AreaFWHM across subjects, b) mean VolFWHM across subjects, c) mean peakFWHM across subjects and d) mean Euclidean distance across subjects between the true peak change in absorption and that recovered from the images. The variance approach results are shown in black squares, the covariance in magenta triangles and the identity matrix in blue circles. The shaded areas represent the standard deviation among subjects. The black arrow indicates whether the true value was lower or larger than the estimated one.
Fig. 10
Fig. 10 Examples of reconstructed images on the GM surface mesh with α = 0.15 at t = 18s (time of peak of the simulated absorption change in the right hemisphere). From left to right, the images recovered using the variance matrix approach, the covariance matrix approach and the identity matrix approach.
Fig. 11
Fig. 11 Mean SNRimage across subjects for the online (in black squares) and offline (in green triangles) reconstruction. The values obtained at the time of peak of the added absorption change in the left and right hemisphere are displayed. The shaded areas represent the standard deviation among subjects.
Fig. 12
Fig. 12 a) mean AreaFWHM across subjects, b) mean VolFWHM across subjects, c) mean peakFWHM across subjects and d) mean Euclidean distance between true and recovered location of maximum change in absorption for the online (black squares) and the offline (green triangles) reconstruction. The values obtained at the time of peak of the added absorption change in the left and right hemisphere are displayed. The shaded areas represent the standard deviation among subjects.
Fig. 13
Fig. 13 Example of two rows of the covariance matrix in one of the subject. The blue line refers to channel 25, which is a 33 mm channel, while the red line to channel 4, which is a 46 mm channel. In both cases, the peak of the plot corresponds to the channel number itself, showing that the covariance of the channel with itself (hence the variance of that channel) is larger than the covariance of the selected channel with all other channels. Furthermore, the amplitude of the variance increases with source-detector distance.

Tables (1)

Tables Icon

Table 1 Optical properties assigned to the head model.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

J i,j mesh = y i μ a i
ΔIsyn=ΔIpert+(βΔIphyβ)
β= 1 α AΔIpert AΔIphy
J * =Σu J T (JΣu J T +Σvλ) 1
SN R image i = Δ μ a i ¯ |ROIActive σ Δμa i |ROIBackground with i=1..n

Metrics