Abstract

A large number of human retinal diseases are characterized by a progressive loss of cones, the photoreceptors critical for visual acuity and color perception. Adaptive Optics (AO) imaging presents a potential method to study these cells in vivo. However, AO imaging in ophthalmology is a relatively new phenomenon and quantitative analysis of these images remains difficult and tedious using manual methods. This paper illustrates a novel semi-automated quantitative technique enabling registration of AO images to macular landmarks, cone counting and its radius quantification at specified distances from the foveal center. The new cone counting approach employs the circle Hough transform (cHT) and is compared to automated counting methods, as well as arbitrated manual cone identification. We explore the impact of varying the circle detection parameter on the validity of cHT cone counting and discuss the potential role of using this algorithm in detecting both cones and rods separately.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images

Anfisa Lazareva, Panos Liatsis, and Franziska G. Rauscher
J. Opt. Soc. Am. A 33(1) 84-94 (2016)

Multi-modal automatic montaging of adaptive optics retinal images

Min Chen, Robert F. Cooper, Grace K. Han, James Gee, David H. Brainard, and Jessica I. W. Morgan
Biomed. Opt. Express 7(12) 4899-4918 (2016)

Compact adaptive optics line scanning ophthalmoscope

Mircea Mujat, R. Daniel Ferguson, Nicusor Iftimia, and Daniel X. Hammer
Opt. Express 17(12) 10242-10258 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
    [Crossref]
  2. H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961).
    [Crossref] [PubMed]
  3. L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
    [Crossref] [PubMed]
  4. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  5. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007).
    [Crossref] [PubMed]
  6. A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
    [Crossref] [PubMed]
  7. A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
    [Crossref] [PubMed]
  8. S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
    [Crossref] [PubMed]
  9. D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, and R. P. Millane, “Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic,” J. Opt. Soc. Am. A 25(5), 1181–1189 (2008).
    [Crossref] [PubMed]
  10. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24(5), 1358–1363 (2007).
    [Crossref] [PubMed]
  11. B. Xue, S. S. Choi, N. Doble, and J. S. Werner, “Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera,” J. Opt. Soc. Am. A 24(5), 1364–1372 (2007).
    [Crossref] [PubMed]
  12. B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
    [Crossref] [PubMed]
  13. L. Mariotti and N. Devaney, “Performance analysis of cone detection algorithms,” J. Opt. Soc. Am. A 32(4), 497–506 (2015).
    [Crossref] [PubMed]
  14. S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
    [Crossref] [PubMed]
  15. R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
    [Crossref] [PubMed]
  16. Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
    [Crossref] [PubMed]
  17. A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).
  18. K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
    [Crossref]
  19. R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
    [Crossref] [PubMed]
  20. R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
    [Crossref] [PubMed]
  21. H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
    [Crossref]
  22. J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 690–698 (1987).
    [Crossref] [PubMed]
  23. C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
    [Crossref]
  24. O. Ecabert and J. P. Thiran, “Adaptive Hough transform for the detection of natural shapes under weak affine transformations,” Pattern Recognit. Lett. 25(12), 1411–1419 (2004).
    [Crossref]
  25. D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
    [Crossref]
  26. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [Crossref] [PubMed]
  27. M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
    [Crossref] [PubMed]
  28. D. M. Tsai, “A machine vision approach for detecting and inspecting circular parts,” Int. J. Adv. Manuf. Technol. 15(3), 217–221 (1999).
    [Crossref]
  29. M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
    [Crossref] [PubMed]
  30. M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).
  31. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
    [Crossref] [PubMed]
  32. C. Bunce, “Correlation, agreement, and Bland-Altman analysis: statistical analysis of method comparison studies,” Am. J. Ophthalmol. 148(1), 4–6 (2009).
    [Crossref] [PubMed]
  33. S. K. Hanneman, “Design, analysis, and interpretation of method-comparison studies,” AACN Adv. Crit. Care 19(2), 223–234 (2008).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

2013 (6)

M. Lombardo, S. Serrao, P. Ducoli, and G. Lombardo, “Influence of sampling window size and orientation on parafoveal cone packing density,” Biomed. Opt. Express 4(8), 1318–1331 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

2012 (2)

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
[Crossref] [PubMed]

2011 (3)

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

2010 (1)

2009 (2)

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

C. Bunce, “Correlation, agreement, and Bland-Altman analysis: statistical analysis of method comparison studies,” Am. J. Ophthalmol. 148(1), 4–6 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (3)

2004 (1)

O. Ecabert and J. P. Thiran, “Adaptive Hough transform for the detection of natural shapes under weak affine transformations,” Pattern Recognit. Lett. 25(12), 1411–1419 (2004).
[Crossref]

1999 (2)

D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
[Crossref]

D. M. Tsai, “A machine vision approach for detecting and inspecting circular parts,” Int. J. Adv. Manuf. Technol. 15(3), 217–221 (1999).
[Crossref]

1990 (2)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

1987 (1)

J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 690–698 (1987).
[Crossref] [PubMed]

1986 (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

1975 (1)

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
[Crossref]

1961 (1)

H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961).
[Crossref] [PubMed]

Ahnelt, P. K.

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Alvis, D. L.

H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961).
[Crossref] [PubMed]

Anderson, R.

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Arichika, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Ballard, D.

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
[Crossref]

Bidaut Garnier, M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Bloch, I.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Boelle, P. Y.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Bones, P. J.

Bruestle, J.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Bunce, C.

C. Bunce, “Correlation, agreement, and Bland-Altman analysis: statistical analysis of method comparison studies,” Am. J. Ophthalmol. 148(1), 4–6 (2009).
[Crossref] [PubMed]

Cable, A. E.

Carroll, J.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Cense, B.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Chateau, N.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Chen, F. K.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Chiu, S. J.

Choi, S. S.

Chui, T. Y.

Coffey, P. J.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Cooper, R. F.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

da Cruz, L.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Debellemanière, G.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Delbosc, B.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Devaney, N.

Doble, N.

Dubis, A. M.

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Dubow, M.

Dubra, A.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

S. J. Chiu, Y. Lokhnygina, A. M. Dubis, A. Dubra, J. Carroll, J. A. Izatt, and S. Farsiu, “Automatic cone photoreceptor segmentation using graph theory and dynamic programming,” Biomed. Opt. Express 4(6), 924–937 (2013).
[Crossref] [PubMed]

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Ducoli, P.

Duncan, J. L.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Ecabert, O.

O. Ecabert and J. P. Thiran, “Adaptive Hough transform for the detection of natural shapes under weak affine transformations,” Pattern Recognit. Lett. 25(12), 1411–1419 (2004).
[Crossref]

Farsiu, S.

Flores, M. M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Fujimoto, J. G.

Gao, W.

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Garcia, P.

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Garg, A. K.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Garrioch, R.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Gias, C.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Godara, P.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Gorczynska, I.

Hangai, M.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Hanneman, S. K.

S. K. Hanneman, “Design, analysis, and interpretation of method-comparison studies,” AACN Adv. Crit. Care 19(2), 223–234 (2008).
[Crossref] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Huber, R.

Huda, W.

D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
[Crossref]

Illingworth, J.

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 690–698 (1987).
[Crossref] [PubMed]

Ioannou, D.

D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
[Crossref]

Izatt, J. A.

Jiang, J. Y.

Jonnal, R. S.

R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Kimme, C.

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
[Crossref]

Kittler, J.

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 690–698 (1987).
[Crossref] [PubMed]

Kocaoglu, O. P.

R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Laine, A. F.

D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
[Crossref]

Lamory, B.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Landa, G.

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Landsem, L.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Langlo, C.

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Langlo, C. S.

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

Lee, S.

Li, K. Y.

Lima, V. C.

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Liu, B. S.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Lokhnygina, Y.

Lombardo, G.

Lombardo, M.

Loquin, K.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Lujan, B. J.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Makhijani, V.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Mariotti, L.

McClelland, Z.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Meillat, M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Menghini, M.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Millane, R. P.

Miller, D. T.

R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Montard, M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Morrow, P.

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Muthiah, M. N.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Nakashima, K.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Novotny, H. R.

H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961).
[Crossref] [PubMed]

Ooto, S.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Paques, M.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Pechauer, A.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Pennesi, M. E.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Peto, T.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Pinhas, A.

Princen, J.

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

Puyraveau, M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Reisen, P.

Roorda, A.

Roorda, A. J.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Rosen, R. B.

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Rossant, F.

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Saleh, M.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Sallo, F. B.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

Schwartz, C.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Scoles, D.

Scotney, B.

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Serrao, S.

Shah, N.

Sklansky, J.

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
[Crossref]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

Srinivasan, V. J.

Sulai, Y. N.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

A. Pinhas, M. Dubow, N. Shah, T. Y. Chui, D. Scoles, Y. N. Sulai, R. Weitz, J. B. Walsh, J. Carroll, A. Dubra, and R. B. Rosen, “In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography,” Biomed. Opt. Express 4(8), 1305–1317 (2013).
[Crossref] [PubMed]

Syed, N.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Syed, R.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Tarima, S.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Thiran, J. P.

O. Ecabert and J. P. Thiran, “Adaptive Hough transform for the detection of natural shapes under weak affine transformations,” Pattern Recognit. Lett. 25(12), 1411–1419 (2004).
[Crossref]

Tsai, D. M.

D. M. Tsai, “A machine vision approach for detecting and inspecting circular parts,” Int. J. Adv. Manuf. Technol. 15(3), 217–221 (1999).
[Crossref]

Tumahai, P.

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Turpin, A.

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Uji, A.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Visotcky, A.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Walsh, J. B.

Wang, Q.

R. S. Jonnal, O. P. Kocaoglu, Q. Wang, S. Lee, and D. T. Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3(1), 104–124 (2012).
[Crossref] [PubMed]

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

Weitz, R.

Werner, J. S.

Wilk, M. A.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Wojtas, D. H.

Wojtkowski, M.

Wolsley, C.

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Wu, B.

Xue, B.

Yasumura, G.

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Yeung, L.

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Yoshimura, N.

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Yuen, H. K.

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

Zacharria, M.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Zayit-Soudry, S.

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

Zhong, J.

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

AACN Adv. Crit. Care (1)

S. K. Hanneman, “Design, analysis, and interpretation of method-comparison studies,” AACN Adv. Crit. Care 19(2), 223–234 (2008).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

C. Bunce, “Correlation, agreement, and Bland-Altman analysis: statistical analysis of method comparison studies,” Am. J. Ophthalmol. 148(1), 4–6 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Br. J. Ophthalmol. (2)

M. N. Muthiah, C. Gias, F. K. Chen, J. Zhong, Z. McClelland, F. B. Sallo, T. Peto, P. J. Coffey, and L. da Cruz, “Cone photoreceptor definition on adaptive optics retinal imaging,” Br. J. Ophthalmol. 98(8), 1073–1079 (2014).
[Crossref] [PubMed]

B. S. Liu, S. Tarima, A. Visotcky, A. Pechauer, R. F. Cooper, L. Landsem, M. A. Wilk, P. Godara, V. Makhijani, Y. N. Sulai, N. Syed, G. Yasumura, A. K. Garg, M. E. Pennesi, B. J. Lujan, A. Dubra, J. L. Duncan, and J. Carroll, “The reliability of parafoveal cone density measurements,” Br. J. Ophthalmol. 98(8), 1126–1131 (2014).
[Crossref] [PubMed]

Circulation (1)

H. R. Novotny and D. L. Alvis, “A method of photographing fluorescence in circulating blood in the human retina,” Circulation 24(1), 82–86 (1961).
[Crossref] [PubMed]

Clin. Experiment. Ophthalmol. (1)

M. Bidaut Garnier, M. M. Flores, G. Debellemanière, M. Puyraveau, P. Tumahai, M. Meillat, C. Schwartz, M. Montard, B. Delbosc, and M. Saleh, “Reliability of cone counts using an adaptive optics retinal camera,” Clin. Experiment. Ophthalmol. 42(9), 830–840 (2014).

Commun. ACM (1)

C. Kimme, D. Ballard, and J. Sklansky, “Finding circles by an array of accumulators,” Commun. ACM 18(2), 120–122 (1975).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Illingworth and J. Kittler, “The adaptive hough transform,” IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 690–698 (1987).
[Crossref] [PubMed]

Image Analysis and Processing (1)

A. Turpin, P. Morrow, B. Scotney, R. Anderson, and C. Wolsley, “Automated identi cation of photoreceptor cones using multi-scale mod- elling and normalized cross-correlation,” Image Analysis and Processing 6978, 494–503 (2011).

Image Vis. Comput. (2)

H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler, “Comparative study of Hough Transform methods for circle finding,” Image Vis. Comput. 8(1), 71–77 (1990).
[Crossref]

D. Ioannou, W. Huda, and A. F. Laine, “Circle recognition through a 2D Hough Transform and radius histogramming,” Image Vis. Comput. 17(1), 15–26 (1999).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. M. Tsai, “A machine vision approach for detecting and inspecting circular parts,” Int. J. Adv. Manuf. Technol. 15(3), 217–221 (1999).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (2)

Q. Wang, O. P. Kocaoglu, B. Cense, J. Bruestle, R. S. Jonnal, W. Gao, and D. T. Miller, “Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics,” Invest. Ophthalmol. Vis. Sci. 52(9), 6292–6299 (2011).
[Crossref] [PubMed]

S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini, and A. J. Roorda, “Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(12), 7498–7509 (2013).
[Crossref] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (4)

Lancet (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet 327(8476), 307–310 (1986).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Ophthalmic Physiol. Opt. (1)

R. F. Cooper, C. S. Langlo, A. Dubra, and J. Carroll, “Automatic detection of modal spacing (Yellott’s ring) in adaptive optics scanning light ophthalmoscope images,” Ophthalmic Physiol. Opt. 33(4), 540–549 (2013).
[Crossref] [PubMed]

Ophthalmology (1)

L. Yeung, V. C. Lima, P. Garcia, G. Landa, and R. B. Rosen, “Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema,” Ophthalmology 116(6), 1158–1167 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Optom. Vis. Sci. (1)

R. Garrioch, C. Langlo, A. M. Dubis, R. F. Cooper, A. Dubra, and J. Carroll, “Repeatability of in vivo parafoveal cone density and spacing measurements,” Optom. Vis. Sci. 89(5), 632–643 (2012).
[Crossref] [PubMed]

Pattern Recognit. Lett. (1)

O. Ecabert and J. P. Thiran, “Adaptive Hough transform for the detection of natural shapes under weak affine transformations,” Pattern Recognit. Lett. 25(12), 1411–1419 (2004).
[Crossref]

PLoS One (1)

A. Uji, S. Ooto, M. Hangai, S. Arichika, and N. Yoshimura, “Image quality improvement in adaptive optics scanning laser ophthalmoscopy assisted capillary visualization using B-spline-based elastic image registration,” PLoS One 8(11), e80106 (2013).
[Crossref] [PubMed]

Other (1)

K. Loquin, I. Bloch, K. Nakashima, F. Rossant, P. Y. Boelle, and M. Paques, “Photoreceptor detection in in-vivo Adaptive Optics images of the retina: Towards a simple interactive tool for the physicians,” Proc. Int. Symp. Biomed. Imaging, 191–194 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic for image processing procedures applied to Adaptive Optics images.
Fig. 2
Fig. 2 Image processing procedures applied to AO data acquired in the human retina. (a) Manual control point registration between the macular photograph and AO frames; (b) Mapping of AO frames onto the macular photograph; (c) Post-processing and image analysis required to compute information about cone number, density and its radius in the region of interest.
Fig. 3
Fig. 3 Retinal cones image montage and corresponding density map visualization.
Fig. 4
Fig. 4 (a) Adaptive optics images obtained using AO-FIO in 2 different locations of the retina; before (top row) and after (bottom row) filtering operation. The red arrows indicate features that are difficult to interpret. The green arrows present how the visibility of these structures is enhanced by the image filter. (b) Images from AO-SLO system. The orange arrows indicate features that are lower contrast. The blue arrows present how the visibility of these structures is enhanced by applying a logarithmic operation.
Fig. 5
Fig. 5 Relationship between standard deviations (SD) and means of manual cone counts, within AO-FIO images, by three independent image graders; before (first column) and after filtering (second column). SD of manual cone counts differences, before (x-axis) and after (y-axis) image filtering showing much lower standard deviations using filtered images (third column). r: Pearson, tau: Kendal and rho: Spearman correlation coefficients; *1p < 0.5, *2 p < 0.1, *3p < 0.05, *4 p < 0.01, *5p < 0.001.
Fig. 6
Fig. 6 Bland-Altman (second column) and scatter plots (third and fourth columns) showing agreement between 2 independent observers in the manual counting of unfiltered (a) vs filtered (b) images obtained using AO-FIO system; Black and red circles on Bland Altman plots correspond to 3-5 and 7-9 degree ranges, respectively.
Fig. 7
Fig. 7 AO-SLO (a) and AO-FIO (b,c) images and their segmentation results using the circle Hough transform. The green arrows indicate cones on the borders of images that sometimes are missed by the algorithm. Yellow arrow shows the features that are difficult to interpret and have been detected by the cHT. The green square presents over-identification of cone when the radius range is too wide. Pixel ranges are: 1-4, 2-4 and 1-9 respectively.
Fig. 8
Fig. 8 Bland-Altman plots showing the agreements between cone counts obtained with manual and automated methods for AO-SLO images. Mean diff.- mean difference, LOA – limit of agreement, Tstat – t-statistic.
Fig. 9
Fig. 9 Bland-Altman plots showing the agreements between cone counts obtained with manual and automated methods for AO-FIO images. Black and red circles on Bland-Altman plots correspond to images obtained using AO-FIO from 3 to 5 and 7-9 degree ranges respectively. Mean diff.- mean difference, LOA – limit of agreement, Tstat – t-statistic.

Tables (1)

Tables Icon

Table 1 Bland-Altman analysis and paired t-test showing the agreement between cone counts obtained manually and automatically using the circle Hough transform method. M diff. – mean difference, LOA – limit of agreement, Tstat - t-statistic. The optimum ranges are highlighted in green. Second most optimal ranges are highlighted in grey.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t=pqs,
q=0.001306( eye axial length-1.82 ).
x i = a i + r i cos( θ ) y i = b i + r i sin( θ )

Metrics