Abstract

Fast signal processing and real-time displays are essential for practical imaging modality in various fields of applications. However, the imaging speed in optical-resolution photoacoustic microscopy (OR-PAM), in particular, depends on factors such as the pulse repetition rate of the laser, scanning method, field of view (FOV), and signal processing time. In the past, efforts to increase acquisition speed either focused on developing new scanning methods or using lasers with higher pulse repetition rates. However, high-speed signal processing is also important for real-time volumetric display in OR-PAM. In this study, we carried out parallel signal processing using a graphics processing unit (GPU) to enable fast signal processing and wide-field real-time displays in laser-scanning OR-PAM. The average total GPU processing time for a B-mode PAM image was approximately 1.35 ms at a display speed of 480 fps when the data samples were acquired with 736 (axial) × 500 (lateral) points/B-mode-frame at a pulse repetition rate of 300 kHz. In addition, we successfully displayed maximum amplitude projection images of a mouse’s ear as volumetric images with an FOV of 3 mm × 3 mm (500 × 500 pixels) at 1.02 s, corresponding to 0.98 fps.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser

Wei Shi, Parsin Hajireza, Peng Shao, Alexander Forbrich, and Roger J. Zemp
Opt. Express 19(18) 17143-17150 (2011)

GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

Byungyeon Kim, Byungjun Park, Seungrag Lee, and Youngjae Won
Biomed. Opt. Express 7(12) 5055-5065 (2016)

Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle

Scott P. Mattison, Ryan L. Shelton, Ryan T. Maxson, and Brian E. Applegate
Biomed. Opt. Express 4(8) 1451-1463 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [Crossref] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref] [PubMed]
  3. M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
    [Crossref] [PubMed]
  4. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [Crossref] [PubMed]
  5. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  6. B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
    [Crossref] [PubMed]
  7. L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
    [Crossref] [PubMed]
  8. B. Rao, K. Maslov, A. Danielli, R. Chen, K. K. Shung, Q. Zhou, and L. V. Wang, “Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution,” Opt. Lett. 36(7), 1137–1139 (2011).
    [Crossref] [PubMed]
  9. W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
    [Crossref] [PubMed]
  10. W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
    [Crossref] [PubMed]
  11. S. P. Mattison, R. L. Shelton, R. T. Maxson, and B. E. Applegate, “Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle,” Biomed. Opt. Express 4(8), 1451–1463 (2013).
    [Crossref] [PubMed]
  12. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
    [Crossref] [PubMed]
  13. N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, “High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging,” J. Opt. Soc. Korea 17(1), 68–72 (2013).
    [Crossref]
  14. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [Crossref] [PubMed]
  15. A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
    [Crossref] [PubMed]
  16. J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
    [Crossref] [PubMed]
  17. X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
    [Crossref] [PubMed]
  18. K. Peng, L. He, Z. Zhu, J. Tang, and J. Xiao, “Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method,” Appl. Opt. 52(34), 8270–8279 (2013).
    [Crossref] [PubMed]
  19. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
    [Crossref] [PubMed]
  20. K. Tsoi and W. Luk, “Axel: A heterogeneous cluster with FPGAs and GPUs,” in Proceedings of the 18th annual ACM/SIGDA international symposium, pp. 115–124 (2010).
    [Crossref]
  21. D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
    [Crossref]
  22. J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
    [Crossref] [PubMed]
  23. J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
    [Crossref] [PubMed]
  24. J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref] [PubMed]

2015 (2)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

2013 (6)

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

S. P. Mattison, R. L. Shelton, R. T. Maxson, and B. E. Applegate, “Continuous real-time photoacoustic demodulation via field programmable gate array for dynamic imaging of zebrafish cardiac cycle,” Biomed. Opt. Express 4(8), 1451–1463 (2013).
[Crossref] [PubMed]

N. H. Cho, U. Jung, S. Kim, W. Jung, J. Oh, H. W. Kang, and J. Kim, “High speed SD-OCT system using GPU accelerated mode for in vivo human eye imaging,” J. Opt. Soc. Korea 17(1), 68–72 (2013).
[Crossref]

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
[Crossref] [PubMed]

K. Peng, L. He, Z. Zhu, J. Tang, and J. Xiao, “Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method,” Appl. Opt. 52(34), 8270–8279 (2013).
[Crossref] [PubMed]

2012 (1)

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
[Crossref] [PubMed]

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

2009 (3)

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[Crossref] [PubMed]

2008 (2)

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006).
[Crossref] [PubMed]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Applegate, B. E.

Bjornsson, C. S.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Bouganis, C.-S.

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
[Crossref]

Carson, P. L.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Chen, R.

Cheung, P. Y. K.

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
[Crossref]

Cho, N. H.

Cutler, B. M.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Danielli, A.

Deán-Ben, X. L.

X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
[Crossref] [PubMed]

Dwarakapuram, S.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Forbrich, A.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

Galanzha, E. I.

Gao, L.

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Gill-Sharp, K. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Hajireza, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

He, L.

Hu, S.

Huang, C.-H.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Itagaki, T.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[Crossref] [PubMed]

Ito, T.

Jiao, S.

Jones, D. H.

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
[Crossref]

Jung, U.

Jung, W.

Kang, H. W.

Khlebtsov, N. G.

Kim, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Kim, J.

Kim, J. Y.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Kim, S.

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Lee, C.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Li, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
[Crossref] [PubMed]

Li, M. L.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Lim, G.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Liu, X.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Luk, W.

K. Tsoi and W. Luk, “Axel: A heterogeneous cluster with FPGAs and GPUs,” in Proceedings of the 18th annual ACM/SIGDA international symposium, pp. 115–124 (2010).
[Crossref]

Maslov, K.

Maslov, K. I.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Mattison, S. P.

Maxson, R. T.

Miura, J.

Narayanaswamy, A.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Oh, J.

Ozbek, A.

X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
[Crossref] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Park, K.

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Peng, K.

Powell, A.

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
[Crossref]

Puliafito, C. A.

Rao, B.

Razansky, D.

X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
[Crossref] [PubMed]

Roysam, B.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Sato, Y.

Schwartz, J. A.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Shain, W.

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

Shao, P.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

Shashkov, E. V.

Shelton, R. L.

Shi, W.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

Shimobaba, T.

Shung, K. K.

Stoica, G.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Takenouchi, M.

Tang, J.

Tsoi, K.

K. Tsoi and W. Luk, “Axel: A heterogeneous cluster with FPGAs and GPUs,” in Proceedings of the 18th annual ACM/SIGDA international symposium, pp. 115–124 (2010).
[Crossref]

Tuchin, V. V.

Wang, J. C.

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

Wang, L.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

B. Rao, L. Li, K. Maslov, and L. Wang, “Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging,” Opt. Lett. 35(10), 1521–1523 (2010).
[Crossref] [PubMed]

Wang, L. V.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

B. Rao, K. Maslov, A. Danielli, R. Chen, K. K. Shung, Q. Zhou, and L. V. Wang, “Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution,” Opt. Lett. 36(7), 1137–1139 (2011).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Wang, X.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Watanabe, Y.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[Crossref] [PubMed]

Wong, T. T. W.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Xiao, J.

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

Xie, Z.

Xu, G.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Yang, J.-M.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Yao, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 36(2), 139–141 (2011).
[Crossref] [PubMed]

Yu, Y.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Yuan, J.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Zemp, R. J.

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

W. Shi, P. Hajireza, P. Shao, A. Forbrich, and R. J. Zemp, “In vivo near-realtime volumetric optical-resolution photoacoustic microscopy using a high-repetition-rate nanosecond fiber-laser,” Opt. Express 19(18), 17143–17150 (2011).
[Crossref] [PubMed]

Zhang, H. F.

Zharov, V. P.

Zhou, Q.

Zhou, Y.

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

Zhu, Z.

Zou, J.

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Trans. Med. Imaging (2)

A. Narayanaswamy, S. Dwarakapuram, C. S. Bjornsson, B. M. Cutler, W. Shain, and B. Roysam, “Robust adaptive 3-D segmentation of vessel laminae from fluorescence confocal microscope images and parallel GPU implementation,” IEEE Trans. Med. Imaging 29(3), 583–597 (2010).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Ozbek, and D. Razansky, “Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imaging 32(11), 2050–2055 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

J. Yuan, G. Xu, Y. Yu, Y. Zhou, P. L. Carson, X. Wang, and X. Liu, “Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization,” J. Biomed. Opt. 18(8), 086001 (2013).
[Crossref] [PubMed]

J. Yao, C.-H. Huang, L. Wang, J.-M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror,” J. Biomed. Opt. 17(8), 080505 (2012).
[Crossref] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[Crossref] [PubMed]

M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009).
[Crossref] [PubMed]

W. Shi, P. Shao, P. Hajireza, A. Forbrich, and R. J. Zemp, “In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy,” J. Biomed. Opt. 18(2), 026001 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Korea (1)

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[Crossref] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref] [PubMed]

Nat. Methods (1)

J. Yao, L. Wang, J.-M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C.-H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Sci. Rep. (1)

J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner,” Sci. Rep. 5, 7932 (2015).
[Crossref] [PubMed]

Other (2)

K. Tsoi and W. Luk, “Axel: A heterogeneous cluster with FPGAs and GPUs,” in Proceedings of the 18th annual ACM/SIGDA international symposium, pp. 115–124 (2010).
[Crossref]

D. H. Jones, A. Powell, C.-S. Bouganis, and P. Y. K. Cheung, “GPU versus FPGA for high productivity computing,” in Proceedings of the 2010 International Conference on Field Programmable Logic and Applications, pp. 119–124 (2010).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (7448 KB)      B-mode OR-PAM image of a BALB/c-nude mouse's ear
» Visualization 2: MOV (847 KB)      MAP OR-PAM image of a BALB/c-nude mouse's ear
» Visualization 3: MOV (812 KB)      Image distortion and changes of shapes and intensities owing to breathing or momentary movement

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of laser-scanning OR-PAM. FLP: fiber launch platform, OF: optical fiber, Col. Lens: collimation lens, Obj. lens: objective lens, UT: ultrasound transducer, and AMP: amplifier. (b) Synchronized signals for line-trigger (green), frame-trigger (blue), fast-axis galvanometer signal (red) from the A/D board, and position signal of the fast-axis galvanometer (magenta).
Fig. 2
Fig. 2 Signal processing sequence flowchart in the CPU and GPU.
Fig. 3
Fig. 3 Illustration of the parallel implementation in the GPU: (a) For Kernels 1, 3, and 4, (b) for Kernel 2 (FFT or IFFT), and (c) for Kernel 5.
Fig. 4
Fig. 4 (a) Computation time versus number of threads per block in the GPU, (b) comparison of the real-time display performance for B-mode PAM images on three different computational platforms: Intel i7 CPU using a single thread, Intel i7 CPU using two threads, and GeForce GTX780 GPU.
Fig. 5
Fig. 5 MAP OR-PAM images of the USAF1951 resolution target: (a) FOV of 3 mm × 3 mm and 500 × 500 pixels, (b) FOV of 1 mm × 1 mm and 500 × 500 pixels.
Fig. 6
Fig. 6 OR-PAM images of a BALB/c-nude mouse’s ear. (a) B-mode PAM image (Visualization 1), (b) MAP PAM image (Visualization 2). BV: Blood vessel.
Fig. 7
Fig. 7 Image distortion owing to movement of the sample position and changes of shapes and intensities owing to movement of focal position in the sample when there were breathing or momentary movement (Visualization 3).

Tables (1)

Tables Icon

Table 1 Average GPU processing time using 500 frames of B-mode PAM images when the number of threads per block was 128.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H(n)={ 1 n=0 and n=N/2 2 0<n<N/2 0 N/2<n<N1

Metrics