Abstract

In this paper, facial images from various video sequences are used to obtain a heart rate reading. In this study, a video camera is used to capture the facial images of eight subjects whose heart rates vary dynamically, between 81 and 153 BPM. Principal component analysis (PCA) is used to recover the blood volume pulses (BVP) which can be used for the heart rate estimation. An important consideration for accuracy of the dynamic heart rate estimation is to determine the shortest video duration that realizes it. This video duration is chosen when the six principal components (PC) are least correlated amongst them. When this is achieved, the first PC is used to obtain the heart rate. The results obtained from the proposed method are compared to the readings obtained from the Polar heart rate monitor. Experimental results show the proposed method is able to estimate the dynamic heart rate readings using less computational requirements when compared to the existing method. The mean absolute error and the standard deviation of the absolute errors between experimental readings and actual readings are 2.18 BPM and 1.71 BPM respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic heart rate measurements from video sequences

Yong-Poh Yu, P. Raveendran, and Chern-Loon Lim
Biomed. Opt. Express 6(7) 2466-2480 (2015)

Robust efficient estimation of heart rate pulse from video

Shuchang Xu, Lingyun Sun, and Gustavo Kunde Rohde
Biomed. Opt. Express 5(4) 1124-1135 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
    [Crossref] [PubMed]
  2. M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
    [Crossref] [PubMed]
  3. A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119(334), 3 (1937).
  4. M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
  5. M. Kumar, A. Veeraraghavan, and A. Sabharwal, “DistancePPG: Robust non-contact vital signs monitoring using a camera,” Biomed. Opt. Express 6(5), 1565–1588 (2015).
    [Crossref] [PubMed]
  6. S. Xu, L. Sun, and G. K. Rohde, “Robust efficient estimation of heart rate pulse from video,” Biomed. Opt. Express 5(4), 1124–1135 (2014).
    [Crossref] [PubMed]
  7. Y. P. Yu, P. Raveendran, and C. L. Lim, “Dynamic heart rate measurements from video sequences,” Biomed. Opt. Express 6(7), 2466–2480 (2015).
    [Crossref] [PubMed]
  8. X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
    [Crossref] [PubMed]
  9. J. Vargas, J. A. Quiroga, and T. Belenguer, “Phase-shifting interferometry based on principal component analysis,” Opt. Lett. 36(8), 1326–1328 (2011).
    [Crossref] [PubMed]
  10. A. Krishnaswamy and G. V. Baranoski, (2004). A study on skin optics. Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report, 1, 1–17.
  11. C. A. Poynton, (1996). A technical introduction to digital video. John Wiley & Sons, Inc.
  12. P. Viola and M. Jones, (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-511). IEEE.
    [Crossref]
  13. M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
    [Crossref] [PubMed]
  14. A. Pietila and T. Tammi, (1997). U.S. Patent No. 5,622,180. Washington, DC: U.S. Patent and Trademark Office.
  15. I. Heikkila, (1998). U.S. Patent No. 5,840,039. Washington, DC: U.S. Patent and Trademark Office.

2015 (2)

2014 (1)

2011 (3)

2010 (2)

2002 (1)

M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
[Crossref] [PubMed]

1937 (1)

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119(334), 3 (1937).

Bai, J.

Belenguer, T.

Hertzman, A. B.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119(334), 3 (1937).

Kamshilin, A. A.

Karjalainen, P. A.

M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
[Crossref] [PubMed]

Kumar, M.

Lim, C. L.

Liu, F.

Liu, X.

McDuff, D. J.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Miridonov, S.

Nippolainen, E.

Picard, R. W.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Poh, M. Z.

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
[Crossref] [PubMed]

Quiroga, J. A.

Ranta-Aho, P. O.

M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
[Crossref] [PubMed]

Raveendran, P.

Rohde, G. K.

Saarenheimo, R.

Sabharwal, A.

Spealman, C. R.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119(334), 3 (1937).

Sun, L.

Tarvainen, M. P.

M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
[Crossref] [PubMed]

Teplov, V.

Vargas, J.

Veeraraghavan, A.

Wang, D.

Xu, S.

Yu, Y. P.

Am. J. Physiol. (1)

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol. 119(334), 3 (1937).

Biomed. Opt. Express (4)

IEEE Trans. Biomed. Eng. (2)

M. Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).

M. P. Tarvainen, P. O. Ranta-Aho, and P. A. Karjalainen, “An advanced detrending method with application to HRV analysis,” IEEE Trans. Biomed. Eng. 49(2), 172–175 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Other (5)

A. Krishnaswamy and G. V. Baranoski, (2004). A study on skin optics. Natural Phenomena Simulation Group, School of Computer Science, University of Waterloo, Canada, Technical Report, 1, 1–17.

C. A. Poynton, (1996). A technical introduction to digital video. John Wiley & Sons, Inc.

P. Viola and M. Jones, (2001). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on (Vol. 1, pp. I-511). IEEE.
[Crossref]

A. Pietila and T. Tammi, (1997). U.S. Patent No. 5,622,180. Washington, DC: U.S. Patent and Trademark Office.

I. Heikkila, (1998). U.S. Patent No. 5,840,039. Washington, DC: U.S. Patent and Trademark Office.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The distribution of log PR, log PG and log PB.
Fig. 2
Fig. 2 The graph of correlation coefficient amongst PCs vs video duration for 3 PCs and 6 PCs respectively.
Fig. 3
Fig. 3 The relationship between the averaged correlation coefficient Ravg and the video duration and the respective computed heart rates.
Fig. 4
Fig. 4 Flow chart of the proposed method.
Fig. 5
Fig. 5 Comparison of actual heart rate readings and computer heart rate readings.
Fig. 6
Fig. 6 Bland-Altman Plot for all computed heart rate readings.

Tables (3)

Tables Icon

Table 1 Correlation coefficient among log PR, log PG, and log PB

Tables Icon

Table 2 Summary of Heart Rate Readings Results Obtained from Proposed Method

Tables Icon

Table 3 Comparison of proposed method (using PCA) and method suggested in [7] (using ICA)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

log P R = { v m ( R ) c m + v h ( R ) c h + A 0 ( R ) } + log k E ( R ) ,
log P G = { v m ( G ) c m + v h ( G ) c h + A 0 ( G ) } + log k E ( G ) ,
log P B = { v m ( B ) c m + v h ( B ) c h + A 0 ( B ) } + log k E ( B ) .
Y = 16 + 65.481 R + 128.553 G + 24.966 B
C b = 128 37.797 R 74.203 G + 112 B
C r = 128 + 112 R 93.786 G 18.214 B
R ( x , y ) = C ( x , y ) C ( x , x ) C ( y , y ) .
R a v g = 1 ( 6 2 ) m = 2 6 n = 1 m R ( m , n ) .

Metrics