Abstract

The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering

Yun Yu, Juqiang Lin, Duo Lin, Shangyuan Feng, Weiwei Chen, Zufang Huang, Hao Huang, and Rong Chen
Biomed. Opt. Express 8(9) 4108-4121 (2017)

A high sensitive fiber SERS probe based on silver nanorod arrays

HsiaoYun Chu, Yongjun Liu, Yaowen Huang, and Yiping Zhao
Opt. Express 15(19) 12230-12239 (2007)

Raman spectroscopy: techniques and applications in the life sciences

Dustin W. Shipp, Faris Sinjab, and Ioan Notingher
Adv. Opt. Photon. 9(2) 315-428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
    [Crossref] [PubMed]
  2. K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
    [Crossref] [PubMed]
  3. C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
    [Crossref] [PubMed]
  4. Z. Darzynkiewicz, and H. Zhao, Cell cycle analysis by flow cytometry eLS (2014).
  5. H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
    [Crossref] [PubMed]
  6. R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
    [PubMed]
  7. C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
    [PubMed]
  8. R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
    [Crossref]
  9. R. McCreery, Raman Spectroscopy for Chemical Analysis (New York: John Wiley and Sons, 2000).
  10. J. Ferraro, K. Nakamoto, and C. Brown, Introductory Raman Spectroscopy, 2nd ed. (Elsevier 2003).
  11. M. Buric, Gas phase Raman spectroscopy using hollow waveguides, (Thesis Diss. University of Pittsburgh, 2011).
  12. R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36(34), 8992–8998 (1997).
    [Crossref] [PubMed]
  13. M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
    [Crossref]
  14. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
    [Crossref] [PubMed]
  15. Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
    [Crossref] [PubMed]
  16. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  17. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  18. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  19. A. Khetani, A. Momenpour, V. Tiwari, and H. Anis, Surface Enhanced Raman Scattering (SERS) using Nanoparticles (Springer International Publishing, 2015).
  20. H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).
  21. V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).
  22. V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).
  23. T. Shimizu and Y. Pommier, “Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases,” Leukemia 11(8), 1238–1244 (1997).
    [Crossref] [PubMed]
  24. M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).
  25. Y. Pommier, “Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins,” Semin. Oncol. 23(1Suppl 3), 3–10 (1996).
    [PubMed]
  26. N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
    [Crossref]
  27. A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
    [Crossref] [PubMed]
  28. Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
    [Crossref] [PubMed]

2015 (1)

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

2014 (1)

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

2013 (2)

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
[Crossref] [PubMed]

2012 (2)

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

2011 (2)

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

2009 (1)

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

2008 (3)

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2006 (3)

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[Crossref]

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

2003 (1)

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

1999 (1)

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1997 (2)

T. Shimizu and Y. Pommier, “Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases,” Leukemia 11(8), 1238–1244 (1997).
[Crossref] [PubMed]

R. Altkorn, I. Koev, R. P. Van Duyne, and M. Litorja, “Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy,” Appl. Opt. 36(34), 8992–8998 (1997).
[Crossref] [PubMed]

1996 (1)

Y. Pommier, “Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins,” Semin. Oncol. 23(1Suppl 3), 3–10 (1996).
[PubMed]

1995 (1)

M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).

Altkorn, R.

Anis, H.

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
[Crossref] [PubMed]

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

Anwar, A. A.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Bilia, A. R.

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Brown, C. M.

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Chang, C. C.

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

Chen, X.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Choi, J. H.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Choi, S. Y.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Dasgupta, P.

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Dawson, T. L.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Earp, H. S.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Efferth, T.

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Ehsan, A.

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

Eichhorn, T.

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, J. J.

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Fujimori, A.

M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).

Fukushima, T.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Furihata, C.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

Gibson, J.

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

Godin, M.

Goh, H. G.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Graham, D. K.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Gu, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Gupta, M.

M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Herrick, J. L.

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holtz, M.

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Hou, L.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Iland, H. J.

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

Jeong, K. H.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Jin, G.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Joshua, D. E.

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kang, M. H.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Karioti, A.

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Keating, A. K.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Khetani, A.

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
[Crossref] [PubMed]

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

Kim, D.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Kim, D. W.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Kim, S. H.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Koev, I.

Kurtzberg, J.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Larsen, S. R.

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

Lee, J.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Lee, Y. S.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Lendl, B.

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

Leopold, N.

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

Li, R.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Liang, X.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Lin, M.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Litorja, M.

Liu, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Lovell, M. A.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Matsushima, G. K.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Momenpour, A.

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

A. Khetani, J. Riordon, V. Tiwari, A. Momenpour, M. Godin, and H. Anis, “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express 21(10), 12340–12350 (2013).
[Crossref] [PubMed]

Naji, M.

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

Nam, Y.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Nie, S. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Oh, S. M.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Oh, Y. J.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Olsen, R. J.

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

Oshima, Y.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

Park, S. G.

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Pommier, Y.

T. Shimizu and Y. Pommier, “Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases,” Leukemia 11(8), 1238–1244 (1997).
[Crossref] [PubMed]

Y. Pommier, “Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins,” Semin. Oncol. 23(1Suppl 3), 3–10 (1996).
[PubMed]

M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).

Qian, X. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Ren, F.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Righeschi, C.

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Riordon, J.

Russell, P.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Saglio, G.

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Salzberg, D. B.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Sather, S.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Sato, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

Schell, M. J.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Shimizu, T.

T. Shimizu and Y. Pommier, “Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases,” Leukemia 11(8), 1238–1244 (1997).
[Crossref] [PubMed]

Shinzawa, H.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

Snodgrass, H. R.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Takenaka, T.

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

Tan, T.

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Tan, Y.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Tiwari, V.

Tiwari, V. S.

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

Wang, H.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Williams, S. A.

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Xu, Z.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Yan, H.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Yang, C.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Yao, Y.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Zhang, G.

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Zhang, J.

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Zhang, K.

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Zhang, Y.

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Zheng, T.

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Zhu, J. J.

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Zu, Y.

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

Anal. Chem. (1)

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Analyst (Lond.) (1)

K. Zhang, T. Tan, J. J. Fu, T. Zheng, and J. J. Zhu, “A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells,” Analyst (Lond.) 138(21), 6323–6330 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Yan, C. Gu, C. Yang, J. Liu, G. Jin, J. Zhang, L. Hou, and Y. Yao, “Hollow core photonic crystal fiber surface-enhanced Raman probe,” Appl. Phys. Lett. 89, 204101 (2006).

Arch. Pathol. Lab. Med. (1)

R. J. Olsen, C. C. Chang, J. L. Herrick, Y. Zu, and A. Ehsan, “Acute leukemia immunohistochemistry: a systematic diagnostic approach,” Arch. Pathol. Lab. Med. 132(3), 462–475 (2008).
[PubMed]

BBA-Gene Struct. Expr. (1)

M. Gupta, A. Fujimori, and Y. Pommier, “Eukaryotic DNA topoisomerases I,” BBA-Gene Struct. Expr. 1262, 1–14 (1995).

Cancer Genomics Proteomics (1)

C. Righeschi, T. Eichhorn, A. Karioti, A. R. Bilia, and T. Efferth, “Microarray-based mRNA expression profiling of leukemia cells treated with the flavonoid, casticin,” Cancer Genomics Proteomics 9(3), 143–151 (2012).
[PubMed]

Carbon (1)

R. Li, Y. Tan, X. Chen, F. Ren, Y. Zhang, Z. Xu, and H. Wang, “Fluorescence probe analysis of leukemia cells by modified graphene oxide,” Carbon 85, 446 (2015).
[Crossref]

Chem. Soc. Rev. (2)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37(5), 912–920 (2008).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

D. K. Graham, D. B. Salzberg, J. Kurtzberg, S. Sather, G. K. Matsushima, A. K. Keating, X. Liang, M. A. Lovell, S. A. Williams, T. L. Dawson, M. J. Schell, A. A. Anwar, H. R. Snodgrass, and H. S. Earp, “Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia,” Clin. Cancer Res. 12(9), 2662–2669 (2006).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

V. S. Tiwari, A. Khetani, A. Momenpour, and H. Anis, “Optimum size and volume of nano particles within hollow core photonic crystal fiber,” IEEE J. Quantum Electron. 20, 7300608 (2014).

IEEE Sensors (1)

V. S. Tiwari, A. Khetani, M. Naji, and H. Anis, “Study of Surface Enhanced Raman Scattering (SERS) within hollow core photonic crystal fiber,” IEEE Sensors 5404, 367–370 (2009).

Intern. Med. J. (1)

C. M. Brown, S. R. Larsen, H. J. Iland, D. E. Joshua, and J. Gibson, “Leukaemias into the 21st century: part 1: the acute leukaemias,” Intern. Med. J. 42(11), 1179–1186 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Oshima, H. Shinzawa, T. Takenaka, C. Furihata, and H. Sato, “Discrimination analysis of human lung cancer cells associated with histological type and malignancy using Raman spectroscopy,” J. Biomed. Opt. 15(1), 017009 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Chem. B (1)

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

Leuk. Lymphoma (1)

H. G. Goh, M. Lin, T. Fukushima, G. Saglio, D. Kim, S. Y. Choi, S. H. Kim, J. Lee, Y. S. Lee, S. M. Oh, and D. W. Kim, “Sensitive quantitation of minimal residual disease in chronic myeloid leukemia using nanofluidic digital polymerase chain reaction assay,” Leuk. Lymphoma 52(5), 896–904 (2011).
[Crossref] [PubMed]

Leukemia (1)

T. Shimizu and Y. Pommier, “Camptothecin-induced apoptosis in p53-null human leukemia HL60 cells and their isolated nuclei: effects of the protease inhibitors Z-VAD-fmk and dichloroisocoumarin suggest an involvement of both caspases and serine proteases,” Leukemia 11(8), 1238–1244 (1997).
[Crossref] [PubMed]

Opt. Express (1)

Science (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Semin. Oncol. (1)

Y. Pommier, “Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins,” Semin. Oncol. 23(1Suppl 3), 3–10 (1996).
[PubMed]

Small (1)

Y. J. Oh, S. G. Park, M. H. Kang, J. H. Choi, Y. Nam, and K. H. Jeong, “Beyond the SERS: Raman enhancement of small molecules using nanofluidic channels with localized surface plasmon resonance,” Small 7(2), 184–188 (2011).
[Crossref] [PubMed]

Other (5)

A. Khetani, A. Momenpour, V. Tiwari, and H. Anis, Surface Enhanced Raman Scattering (SERS) using Nanoparticles (Springer International Publishing, 2015).

Z. Darzynkiewicz, and H. Zhao, Cell cycle analysis by flow cytometry eLS (2014).

R. McCreery, Raman Spectroscopy for Chemical Analysis (New York: John Wiley and Sons, 2000).

J. Ferraro, K. Nakamoto, and C. Brown, Introductory Raman Spectroscopy, 2nd ed. (Elsevier 2003).

M. Buric, Gas phase Raman spectroscopy using hollow waveguides, (Thesis Diss. University of Pittsburgh, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Hollow core photonic crystal fiber HC19-1550 (a) SEM image courtesy NKT Photonics Inc. (b) spatial distribution of modal field of leukemia sample solution filled HC-PCF imaged using a CCD camera (Canon) exhibiting a perfect Gaussian profile.

Fig. 2
Fig. 2

UV-Vis absorption spectrum of silver nanoparticles. Inset shows the TEM image of spherical silver nanoparticles of ~60nm size.

Fig. 3
Fig. 3

Schematic of the setup. LA: Laser source with collimating lens; BP: Band pass filter; DM: Dichroic Mirror; L1: Microscope objective lens for light coupling; H-shaped differential pressure system with hollow core photonic crystal fiber; L2: Microscope objective lens for backward light collection; CF: Collection fiber; SP: spectrograph; CCD: CCD camera; COM: Computer.

Fig. 4
Fig. 4

Enhancement of Raman signal of HL60 cells in HC-PCF using silver nanoparticles.

Fig. 5
Fig. 5

Plots of principal component analysis (PCA) analysis of Raman spectra of different leukemia cells stages showing distinguishable live, apoptotic and necrotic cell stages.

Fig. 6
Fig. 6

Raman spectra of leukemia cells cycle stages with distinguishing Raman peaks in live, apoptotic and necrotic cells.

Fig. 7
Fig. 7

SERS spectra of different concentrations of live HL60 cells, expressed as cells/ml.

Fig. 8
Fig. 8

PLS prediction of different concentrations of leukemia cells/ml showing excellent correlation between calibrated and predicted samples with R2 = 0.99 and RMSEC and RMSEP of 11 and 140 cells/ml.

Fig. 9
Fig. 9

Number of events vs. total number of cells/mL for HL60 cells. Number of events was quantified by using the scattering upon 488-nm excitation of a non-stained cell suspension. Top inset shows the scattering profile for the sample containing 25,000 cells/mL. Bottom inset shows a magnification for the lower cell numbers where the red area denotes the noise region or lower limit of detection for the system. Right panels include the scattering profile for the sample with 310 cells/mL and a control solution without any cells, where it can be clearly seen the close similarity between the two plots.

Metrics