Abstract

Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Capturing the vital vascular fingerprint with optical coherence tomography

Gangjun Liu and Zhongping Chen
Appl. Opt. 52(22) 5473-5477 (2013)

Secure fingerprint identification based on structural and microangiographic optical coherence tomography

Xuan Liu, Farzana Zaki, Yahui Wang, Qiongdan Huang, Xin Mei, and Jiangjun Wang
Appl. Opt. 56(8) 2255-2259 (2017)

Scalable wide-field optical coherence tomography-based angiography for in vivo imaging applications

Jingjiang Xu, Wei Wei, Shaozhen Song, Xiaoli Qi, and Ruikang K. Wang
Biomed. Opt. Express 7(5) 1905-1919 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
    [Crossref]
  2. D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer Publishing Company, Incorporated, 2009), p. 496.
  3. E. H. Holder, L. O. Robinson, J. H. Laub, and J. National Institute of, The fingerprint sourcebook (U.S. Department. of Justice, Office of Justice Programs, National Institute of Justice, Washington, DC, 2011).
  4. A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
    [Crossref] [PubMed]
  5. S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
    [Crossref] [PubMed]
  6. C. Sousedik and C. Busch, “Presentation attack detection methods for fingerprint recognition systems: a survey,” in IET Biometrics, (Institution of Engineering and Technology, 2014), pp. 219–233.
  7. R. Rowe, K. Nixon, and P. Butler, “Multispectral Fingerprint Image Acquisition,” in Advances in Biometrics, N. Ratha and V. Govindaraju, eds. (Springer London, 2008), pp. 3–23.
  8. R. K. Rowe, K. A. Nixon, and S. P. Corcoran, “Multispectral fingerprint biometrics,” in Information Assurance Workshop,2005. IAW '05. Proceedings from the Sixth Annual IEEE SMC, 2005), 14–20.
  9. N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
    [Crossref]
  10. Y. Cheng and K. V. Larin, “Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis,” Appl. Opt. 45(36), 9238–9245 (2006).
    [Crossref] [PubMed]
  11. Y. Cheng and K. V. Larin, “In Vivo Two- and Three-Dimensional Imaging of Artificial and Real Fingerprints With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(20), 1634–1636 (2007).
    [Crossref]
  12. A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
    [Crossref]
  13. L. Mengyang and T. Buma, “Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22, 1677–1679 (2010).
  14. A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
    [Crossref] [PubMed]
  15. G. Liu and Z. Chen, “Capturing the vital vascular fingerprint with optical coherence tomography,” Appl. Opt. 52(22), 5473–5477 (2013).
    [Crossref] [PubMed]
  16. L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).
  17. C. Sousedik, R. Breithaupt, and C. Busch, “Volumetric fingerprint data analysis using Optical Coherence Tomography,” in Biometrics Special Interest Group (BIOSIG),2013International Conference of the, 2013), 1–6.
  18. R. Breithaupt, C. Sousedik, and S. Meissner, “Full fingerprint scanner using optical coherence tomography,” in Biometrics and Forensics (IWBF),2015International Workshop on, 2015), 1–6.
    [Crossref]
  19. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref] [PubMed]
  20. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  21. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  22. A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
    [Crossref] [PubMed]
  23. E. Dalimier and D. Salomon, “Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
    [Crossref] [PubMed]
  24. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
    [Crossref] [PubMed]
  25. E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
    [Crossref] [PubMed]
  26. S. Chang, Y. Cheng, K. V. Larin, Y. Mao, S. Sherif, and C. Flueraru, “Optical coherence tomography used for security and fingerprint-sensing applications,” in IET Image Processing, (Institution of Engineering and Technology, 2008), pp. 48–58.
  27. F. Harms, E. Dalimier, and A. C. Boccara, “En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition,” Proc. SPIE 9075, 90750E (2014).
  28. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
    [Crossref]
  29. Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
    [Crossref]
  30. A. Negrean and H. D. Mansvelder, “Optimal lens design and use in laser-scanning microscopy,” Biomed. Opt. Express 5(5), 1588–1609 (2014).
    [Crossref] [PubMed]
  31. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
    [Crossref] [PubMed]
  32. E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
    [Crossref] [PubMed]
  33. E. Auksorius and A. Claude Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
    [Crossref] [PubMed]
  34. C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
    [Crossref] [PubMed]
  35. C. W. Smith, E. J. Botcherby, M. J. Booth, R. Juškaitis, and T. Wilson, “Agitation-free multiphoton microscopy of oblique planes,” Opt. Lett. 36(5), 663–665 (2011).
    [Crossref] [PubMed]
  36. J. Holmes and J. Welzel, “OCT in Dermatology,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 2189–2207.

2015 (2)

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

E. Auksorius and A. Claude Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (4)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

G. Liu and Z. Chen, “Capturing the vital vascular fingerprint with optical coherence tomography,” Appl. Opt. 52(22), 5473–5477 (2013).
[Crossref] [PubMed]

2012 (3)

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

E. Dalimier and D. Salomon, “Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
[Crossref]

L. Mengyang and T. Buma, “Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22, 1677–1679 (2010).

2008 (2)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

C. Dunsby, “Optically sectioned imaging by oblique plane microscopy,” Opt. Express 16(25), 20306–20316 (2008).
[Crossref] [PubMed]

2007 (3)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
[Crossref] [PubMed]

Y. Cheng and K. V. Larin, “In Vivo Two- and Three-Dimensional Imaging of Artificial and Real Fingerprints With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(20), 1634–1636 (2007).
[Crossref]

2006 (2)

2004 (3)

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
[Crossref]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

2003 (1)

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

1998 (1)

Akhoury, S. S.

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Aranda, J.

Assayag, O.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Auksorius, E.

Beaurepaire, E.

Bini, A.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Blanchot, L.

Boccara, A. C.

F. Harms, E. Dalimier, and A. C. Boccara, “En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition,” Proc. SPIE 9075, 90750E (2014).

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref] [PubMed]

Boccara, C.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Booth, M. J.

Bossen, A.

A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
[Crossref]

Botcherby, E. J.

Bouma, B.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Bouma, B. E.

Bromberg, Y.

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Buma, T.

L. Mengyang and T. Buma, “Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22, 1677–1679 (2010).

Chassot, J.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Chen, Y.

A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
[Crossref] [PubMed]

Chen, Z.

Cheng, Y.

Y. Cheng and K. V. Larin, “In Vivo Two- and Three-Dimensional Imaging of Artificial and Real Fingerprints With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(20), 1634–1636 (2007).
[Crossref]

Y. Cheng and K. V. Larin, “Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis,” Appl. Opt. 45(36), 9238–9245 (2006).
[Crossref] [PubMed]

Chretien, F.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Claude Boccara, A.

E. Auksorius and A. Claude Boccara, “Dark-field full-field optical coherence tomography,” Opt. Lett. 40(14), 3272–3275 (2015).
[Crossref] [PubMed]

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Congiu, T.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Connan, J.

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Coron, E.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

Dalimier, E.

F. Harms, E. Dalimier, and A. C. Boccara, “En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition,” Proc. SPIE 9075, 90750E (2014).

E. Dalimier and D. Salomon, “Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

Darlow, L. N.

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

Demirkus, M.

A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
[Crossref] [PubMed]

Devaux, B.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Draxinger, W.

Dsouza, R.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Dubois, A.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

Dunsby, C.

Enfield, J.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Fink, M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

Goldstein, A. M.

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Grieve, K.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

Harms, F.

F. Harms, E. Dalimier, and A. C. Boccara, “En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition,” Proc. SPIE 9075, 90750E (2014).

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Huber, R.

Jain, A. K.

A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
[Crossref] [PubMed]

Juškaitis, R.

Karpf, S.

Kazlauskas, A.

Klein, T.

Larin, K.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Larin, K. V.

Y. Cheng and K. V. Larin, “In Vivo Two- and Three-Dimensional Imaging of Artificial and Real Fingerprints With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(20), 1634–1636 (2007).
[Crossref]

Y. Cheng and K. V. Larin, “Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis,” Appl. Opt. 45(36), 9238–9245 (2006).
[Crossref] [PubMed]

Leahy, M. J.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Lebec, M.

Lehmann, R.

A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
[Crossref]

Liu, G.

Liu, L.

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Mahé, M. M.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Manelli, A.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Mansvelder, H. D.

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Meier, C.

A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
[Crossref]

Mengyang, L.

L. Mengyang and T. Buma, “Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22, 1677–1679 (2010).

Miura, N.

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
[Crossref]

Miyatake, T.

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
[Crossref]

Moneron, G.

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

Motiejunaite, R.

Nagasaka, A.

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
[Crossref]

Nahas, A.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Negrean, A.

Neunlist, M.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Nguyen, T.-M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

O’Connell, M.-L.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

O’Gorman, L.

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

Pallud, J.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Pfeiffer, T.

Pieretti, A.

E. Auksorius, Y. Bromberg, R. Motiejūnaitė, A. Pieretti, L. Liu, E. Coron, J. Aranda, A. M. Goldstein, B. E. Bouma, A. Kazlauskas, and G. J. Tearney, “Dual-modality fluorescence and full-field optical coherence microscopy for biomedical imaging applications,” Biomed. Opt. Express 3(3), 661–666 (2012).
[Crossref] [PubMed]

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Pilato, G.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Raspanti, M.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Reguzzoni, M.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Saint-Jalmes, H.

Salomon, D.

E. Dalimier and D. Salomon, “Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

Sangiorgi, S.

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

Sato, M.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Smith, C. W.

Steiger, C.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Subhash, H. M.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Tanter, M.

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Tearney, G.

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Tearney, G. J.

Varlet, P.

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Watanabe, Y.

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Wieser, W.

Wilson, T.

Wojtkowski, M.

Xia, X.

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

Zam, A.

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[Crossref]

Biomed. Opt. Express (3)

Dermatology (Basel) (1)

E. Dalimier and D. Salomon, “Full-Field Optical Coherence Tomography: A New Technology for 3D High-Resolution Skin Imaging,” Dermatology (Basel) 224(1), 84–92 (2012).
[Crossref] [PubMed]

ELECTIM (1)

L. N. Darlow, J. Connan, and S. S. Akhoury, “Internal fingerprint zone detection in optical coherence tomography fingertip scans,” ELECTIM 24, 023027 (2015).

IEEE Photonics Technol. Lett. (3)

Y. Cheng and K. V. Larin, “In Vivo Two- and Three-Dimensional Imaging of Artificial and Real Fingerprints With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 19(20), 1634–1636 (2007).
[Crossref]

A. Bossen, R. Lehmann, and C. Meier, “Internal Fingerprint Identification With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22(7), 507–509 (2010).
[Crossref]

L. Mengyang and T. Buma, “Biometric Mapping of Fingertip Eccrine Glands With Optical Coherence Tomography,” IEEE Photonics Technol. Lett. 22, 1677–1679 (2010).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. K. Jain, Y. Chen, and M. Demirkus, “Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features,” IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 15–27 (2007).
[Crossref] [PubMed]

J. Anat. (1)

S. Sangiorgi, A. Manelli, T. Congiu, A. Bini, G. Pilato, M. Reguzzoni, and M. Raspanti, “Microvascularization of the human digit as studied by corrosion casting,” J. Anat. 204(2), 123–131 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Nahas, M. Tanter, T.-M. Nguyen, J.-M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Zam, R. Dsouza, H. M. Subhash, M.-L. O’Connell, J. Enfield, K. Larin, and M. J. Leahy, “Feasibility of correlation mapping optical coherence tomography (cmOCT) for anti-spoof sub-surface fingerprinting,” J. Biophotonics 6(9), 663–667 (2013).
[Crossref] [PubMed]

Mach. Vis. Appl. (1)

N. Miura, A. Nagasaka, and T. Miyatake, “Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification,” Mach. Vis. Appl. 15(4), 194–203 (2004).
[Crossref]

Neurogastroenterol. Motil. (1)

E. Coron, E. Auksorius, A. Pieretti, M. M. Mahé, L. Liu, C. Steiger, Y. Bromberg, B. Bouma, G. Tearney, M. Neunlist, and A. M. Goldstein, “Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract,” Neurogastroenterol. Motil. 24(12), e611–e621 (2012).
[Crossref] [PubMed]

Neuroimage Clin. (1)

O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, “Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography,” Neuroimage Clin. 2, 549–557 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Watanabe and M. Sato, “Three-dimensional wide-field optical coherence tomography using an ultrahigh-speed CMOS camera,” Opt. Commun. 281(7), 1889–1895 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Pattern Recognit. (1)

X. Xia and L. O’Gorman, “Innovations in fingerprint capture devices,” Pattern Recognit. 36(2), 361–369 (2003).
[Crossref]

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Harms, E. Dalimier, and A. C. Boccara, “En-face full-field optical coherence tomography for fast and efficient fingerprints acquisition,” Proc. SPIE 9075, 90750E (2014).

Other (9)

S. Chang, Y. Cheng, K. V. Larin, Y. Mao, S. Sherif, and C. Flueraru, “Optical coherence tomography used for security and fingerprint-sensing applications,” in IET Image Processing, (Institution of Engineering and Technology, 2008), pp. 48–58.

J. Holmes and J. Welzel, “OCT in Dermatology,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, 2015), pp. 2189–2207.

D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition (Springer Publishing Company, Incorporated, 2009), p. 496.

E. H. Holder, L. O. Robinson, J. H. Laub, and J. National Institute of, The fingerprint sourcebook (U.S. Department. of Justice, Office of Justice Programs, National Institute of Justice, Washington, DC, 2011).

C. Sousedik, R. Breithaupt, and C. Busch, “Volumetric fingerprint data analysis using Optical Coherence Tomography,” in Biometrics Special Interest Group (BIOSIG),2013International Conference of the, 2013), 1–6.

R. Breithaupt, C. Sousedik, and S. Meissner, “Full fingerprint scanner using optical coherence tomography,” in Biometrics and Forensics (IWBF),2015International Workshop on, 2015), 1–6.
[Crossref]

C. Sousedik and C. Busch, “Presentation attack detection methods for fingerprint recognition systems: a survey,” in IET Biometrics, (Institution of Engineering and Technology, 2014), pp. 219–233.

R. Rowe, K. Nixon, and P. Butler, “Multispectral Fingerprint Image Acquisition,” in Advances in Biometrics, N. Ratha and V. Govindaraju, eds. (Springer London, 2008), pp. 3–23.

R. K. Rowe, K. A. Nixon, and S. P. Corcoran, “Multispectral fingerprint biometrics,” in Information Assurance Workshop,2005. IAW '05. Proceedings from the Sixth Annual IEEE SMC, 2005), 14–20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

FF-OCT fingerprint sensor. The system is shown in an oblique imaging configuration (with tilted reflector). Fiber-bundle delivers light from a halogen lamp source (not shown) to the system, where it goes through the Köhler illumination and is divided into the reference and sample arms by a beamsplitter (BS). Scattered light (gray) and reference beam (red) is recombined and imaged onto an InGaAs camera. Piezo actuator in the reference arm is used to modulate the interference on the camera. A motor is used to select the imaging depth in the finger. Note that in the diagram only one beam path is traced, which originates at the center of the fiber bundle. Insets (a): a magnified view of the reference and sample coherence gates with the exaggerated reference beam tilt. Δ – FOV that is limited due to the narrow coherence gate overlap in case of imaging a flat reflector or a very thin specimen. Inset (b): a magnified view of the reference coherence gate and a sample with the exaggerated reference beam tilt. The FOV is not limited due to the thick specimen but the coherence gate tilt slices it at an oblique angle that is defined by the reflector’s tilt.

Fig. 2
Fig. 2

Fingerprint images acquired with FTIR and FF-OCT sensors. (a) FTIR image of the external fingerprint, (b) FF-OCT image of the internal fingerprint, (c) FF-OCT axial image of the fingerprint. Sweat pores (sp) and the internal fingerprint (int) are visible. Strong reflections at the finger-glass interface dominate the signal at the top of the image. Bar scale 0.5 × 2 mm, (d) FF-OCT image of sweat pores, (e) o-FF-OCT image containing sweat pores and the internal fingerprint, f) A sum of image (e) along its x-axis, which shows the location of a plane with the strongest signal in the internal fingerprint.

Fig. 3
Fig. 3

Fast fingerprint imaging (0.8 sec.) with FF-OCT. (a) external fingerprint (0 µm), (b) internal fingerprint (300 µm) and (c) sweat pores (200 µm).

Metrics