Abstract

A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Calculation of spherical red blood cell deformation in a dual-beam optical stretcher

Paul B. Bareil, Yunlong Sheng, Yin-Quan Chen, and Arthur Chiou
Opt. Express 15(24) 16029-16034 (2007)

Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers

Lingyao Yu, Yunlong Sheng, and Arthur Chiou
Opt. Express 21(10) 12174-12184 (2013)

Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher

Andrew E. Ekpenyong, Carolyn L. Posey, Joy L. Chaput, Anya K. Burkart, Meg M. Marquardt, Timothy J. Smith, and Michael G. Nichols
Appl. Opt. 48(32) 6344-6354 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles using Lasers (World Scientific, 2006) p. 99.
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  3. S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
    [Crossref] [PubMed]
  4. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
    [Crossref]
  5. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
    [Crossref] [PubMed]
  6. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  7. A. E. Ekpenyong, C. L. Posey, J. L. Chaput, A. K. Burkart, M. M. Marquardt, T. J. Smith, and M. G. Nichols, “Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher,” Appl. Opt. 48(32), 6344–6354 (2009).
    [Crossref] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  9. D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45(5), 880–887 (2006).
    [Crossref] [PubMed]
  10. J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13(2), 79–80 (1988).
    [Crossref] [PubMed]
  11. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [Crossref] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  13. J. Kim, Y. Jeong, S. Lee, W. Ha, J.-S. Shin, and K. Oh, “Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping,” Opt. Lett. 37(4), 623–625 (2012).
    [Crossref] [PubMed]
  14. S. R. Lee, J. Kim, S. Lee, Y. Jung, J. K. Kim, and K. Oh, “All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles,” Opt. Express 18(24), 25299–25305 (2010).
    [Crossref] [PubMed]
  15. P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003) p. 163.
  16. P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express 18(6), 6396–6407 (2010).
    [Crossref] [PubMed]
  17. S. Kim, “Prevention of blood cell adhesion, thrombosis, and hemolysis by means of saline perfusion”, Thesis doctoral from Biomedical engineering department in University of Iowa (1992)
  18. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
    [Crossref] [PubMed]
  19. L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
    [Crossref] [PubMed]
  20. I. M. Ward and J. Sweeney, “An Introduction to the Mechanical Properties of Solid Polymers, 2nd edition”, p. 65 (Wiley, 2005)
  21. V. A. Lubarda and A. Marzani, “Viscoelastic response of thin membranes with application to red blood cells,” Acta Mech. 202(1-4), 1–16 (2009).
    [Crossref]
  22. S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
    [Crossref] [PubMed]
  23. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [Crossref] [PubMed]
  24. Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
    [Crossref] [PubMed]
  25. J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
    [Crossref]
  26. L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
    [Crossref] [PubMed]
  27. H. Engelhardt and E. Sackmann, “On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields,” Biophys. J. 54(3), 495–508 (1988).
    [Crossref] [PubMed]

2013 (1)

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (2)

2009 (2)

2008 (2)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

2003 (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

2002 (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

2000 (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

1999 (1)

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

1996 (1)

1988 (2)

H. Engelhardt and E. Sackmann, “On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields,” Biophys. J. 54(3), 495–508 (1988).
[Crossref] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13(2), 79–80 (1988).
[Crossref] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1982 (1)

L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
[Crossref] [PubMed]

1978 (1)

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

1973 (1)

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

Acosta, E. P.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Anderson, K. S.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Ashok, P. C.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Burkart, A. K.

Callender, M.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Chaput, J. L.

Chien, S.

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Choi, W.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Dao, M.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Deng, J. L.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Dholakia, K.

P. C. Ashok, R. F. Marchington, P. Mthunzi, T. F. Krauss, and K. Dholakia, “Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation,” Opt. Express 18(6), 6396–6407 (2010).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Diez-Silva, M.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Durnin, J.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Eberly, J. H.

Ekpenyong, A. E.

Engelhardt, H.

H. Engelhardt and E. Sackmann, “On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields,” Biophys. J. 54(3), 495–508 (1988).
[Crossref] [PubMed]

Evans, E. A.

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

Feld, M. S.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Gahagan, K. T.

Gallet, F.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Grier, D. G.

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Ha, W.

Hénon, S.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Jeong, Y.

Jung, Y.

Karniadakis, G. E.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Kim, J.

Kim, J. K.

Krauss, T. F.

Lee, S.

Lee, S. R.

Lenormand, G.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Li, X.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Li, Y. Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Lim, C. T.

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Lovlin, R. E.

L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
[Crossref] [PubMed]

Lubarda, V. A.

V. A. Lubarda and A. Marzani, “Viscoelastic response of thin membranes with application to red blood cells,” Acta Mech. 202(1-4), 1–16 (2009).
[Crossref]

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Marchington, R. F.

Marquardt, M. M.

Marzani, A.

V. A. Lubarda and A. Marzani, “Viscoelastic response of thin membranes with application to red blood cells,” Acta Mech. 202(1-4), 1–16 (2009).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

McMahon, M. A.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Miceli, J. J.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Mthunzi, P.

Nichols, M. G.

Oh, K.

Park, Y.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Peng, Z.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Peterson, S.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Pitt, E.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Pivkin, I. V.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Popescu, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Posey, C. L.

Richert, A.

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

Roichman, Y.

Rowlands, S.

L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
[Crossref] [PubMed]

Sackmann, E.

H. Engelhardt and E. Sackmann, “On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields,” Biophys. J. 54(3), 495–508 (1988).
[Crossref] [PubMed]

Sedaghat, A. R.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Sewchand, L. S.

L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
[Crossref] [PubMed]

Shen, L.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Shin, J.-S.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Siliciano, R. F.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Skalak, R.

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Smith, T. J.

Sung, K.-L. P.

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Suresh, S.

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

Swartzlander, G. A.

Tözeren, A.

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Usami, S.

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

Wang, Y. Z.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Wei, Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Zhang, H.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Zhang, M. H.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Zhou, Y.

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Acta Mech. (1)

V. A. Lubarda and A. Marzani, “Viscoelastic response of thin membranes with application to red blood cells,” Acta Mech. 202(1-4), 1–16 (2009).
[Crossref]

Appl. Opt. (2)

Biophys. J. (5)

H. Engelhardt and E. Sackmann, “On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields,” Biophys. J. 54(3), 495–508 (1988).
[Crossref] [PubMed]

S. Chien, K.-L. P. Sung, R. Skalak, S. Usami, and A. Tözeren, “Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane,” Biophys. J. 24(2), 463–487 (1978).
[Crossref] [PubMed]

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13(9), 941–954 (1973).
[Crossref] [PubMed]

S. Hénon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers,” Biophys. J. 76(2), 1145–1151 (1999).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Cell Biophys. (1)

L. S. Sewchand, S. Rowlands, and R. E. Lovlin, “Resistance to the Brownian Movement of Red Blood Cells on Flat Horizontal Surfaces,” Cell Biophys. 4(1), 41–46 (1982).
[Crossref] [PubMed]

J. Mech. Phys. Solids (1)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003).
[Crossref]

J. Raman Spectrosc. (1)

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Nat. Med. (1)

L. Shen, S. Peterson, A. R. Sedaghat, M. A. McMahon, M. Callender, H. Zhang, Y. Zhou, E. Pitt, K. S. Anderson, E. P. Acosta, and R. F. Siliciano, “Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs,” Nat. Med. 14(7), 762–766 (2008).
[Crossref] [PubMed]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy Beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84(23), 5451–5454 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[Crossref] [PubMed]

Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, “Lipid bilayer and cytoskeletal interactions in a red blood cell,” Proc. Natl. Acad. Sci. U.S.A. 110(33), 13356–13361 (2013).
[Crossref] [PubMed]

Other (4)

I. M. Ward and J. Sweeney, “An Introduction to the Mechanical Properties of Solid Polymers, 2nd edition”, p. 65 (Wiley, 2005)

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles using Lasers (World Scientific, 2006) p. 99.

S. Kim, “Prevention of blood cell adhesion, thrombosis, and hemolysis by means of saline perfusion”, Thesis doctoral from Biomedical engineering department in University of Iowa (1992)

P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003) p. 163.

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1649 KB)      Irreversible stretching

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The schematic diagram of experimental setup for the proposed fiber optic stretcher in lab-on-a chip: all fiber Bessel-like beam generator (AFBG), laser diode (λ = 980 nm) with a pig tailed single mode fiber (HI 1060 FLEX), polydimethylsiloxane (PDMS) chamber, and micro-pump connected to capillary tube for sample (RBC) delivery.
Fig. 2
Fig. 2 (a) Schematic diagram of the proposed fiber optic lab-on-a-chip to optically stretch single RBC. RBCs in a saline solution were fed into the channel from inlet to outlet through capillary tubes. (b) Actual photograph of the microfluidic channel and counter-propagating beams from two AFBGs at the wavelength of 980 nm. (c) Schematic diagram of optical stretching of RBC in the proposed system.
Fig. 3
Fig. 3 The schematic diagram of two types of AFBG and their beams propagation in the air: (a-1) Flat tip type (advanced one) and (a-2) Lensed tip type (prior one). The cross section images of the beam from AFBGs with the flat tip (b-1) and the lensed tip (b-2) taken by a CCD camera at the propagation distance of 400 μm from fiber tip. The longitudinal (c-1) and transverse (c-2) intensity profiles of beams from AFBGs with flat tip (black) and lensed tip (red).
Fig. 4
Fig. 4 The transverse intensity profiles of (a-1) Gaussian beam from a conventional single mode fiber and (a-2) Bessel-like beam from proposed fiber device taken by a CCD camera at the propagation distance of 100 μm from fiber tip in the air. (a-3) transverse line profiles of Gaussian and Bessel-like beam from (a-1) and (a-2). (b) the intensity and (c) the diameter of the central peak of Bessel-like beam along the propagation axis in the air.
Fig. 5
Fig. 5 (a) The normalized intensity of the central beam of our AFBG (red solid) and a Gaussian beam used in prior reports [5,6 ] (black dash dot line) at the 100 mW beams. Inset image is the typical size of Red Blood Cell. Ac.b. is the total FWHM beam area of the central beam. Apeak is the central peak beam area within 1 μm2. dRBC is the diameter of red blood cell. (b) The polar profiles of total surface stress on one surface of single RBC by Gaussian and Bessel-like beam.
Fig. 6
Fig. 6 Sequential images of optically stretched single RBC by two counter propagating AFBGs in two distinctive deformation regions: (a) At Pc.b. = 55 mW, reversible stretching where the stretched RBC recovered its original shape and (b) at Pc.b. = 70 mW, irreversible stretching where the stretched RBC maintained its deformation after the laser was turned off. At each range, 5 samples were measured and characterized.
Fig. 7
Fig. 7 Time series images of specially deformed single RBC by flow (dot arrow) and dual Bessel beams (solid arrows: Ftot ~23 pN) (see Visualization 1): (a) Snail shape deformation and (b) Hat shape deformation at the flow rate of 150 μm/s and 138 μm/s, respectively.
Fig. 8
Fig. 8 (a) Initial status (before deformation) and (b) final status (deformation completion) of a single RBC image and its 2 dimensional length along x and y axes (c) Aspect ratio R of the deformed RBC plotted as a function of total stretching force Ftot induced by the dual Bessel-like beams. Insets are typical deformed RBC images at two distinctive stretching phases: Reversible phase (left) and Irreversible phases (right). 20 samples were taken by CCD for analysis. The error bars are standard deviations.
Fig. 9
Fig. 9 (a) Sequential images of a irreversibly stretched single RBC (see Visualization 1) and definition of irreversible stretching time tI.S. (b) tI.S. as a function of Ftot and Stot . Distinctive deformation region of optical stretching as a function of Ftot acting on RBC (i: Neither trapping nor stretching, ii: Trapping & Reversible stretching, iii: Irreversible stretching) The number of measured samples is 12 (Each data includes 3 measured RBC samples). Fit curve was derived in Eq. (7) and was approximated to the experimental data (red-line).
Fig. 10
Fig. 10 Irreversible stretching time tI.S. as a function of Stot with respect to different shear moduli μRBC ; Blue line: 4.3 μN/m, Black line: 8.5 μN/m, and Red line: 17 μN/m (The constraints: strain ε is 1.1, and viscosity ηRBC is 2.5 μN·s/m) Each dot lines are asymptotes at different shear moduli and means the optical surface stress where irreversible stretching occurs.
Fig. 11
Fig. 11 Irreversible stretching time tI.S. as a function of Stot for RBC groups in various alcohol-saline solutions. Experimental data are represented by symbols, which are fitted by theoretical curves in solid lines. RBC (100 μl) was mixed with saline solutions (5 ml) of No alcohol 0% (Black square), 0.1% ethyl alcohol (Red circle), 0.5% ethyl alcohol (Blue triangle), and 5% ethyl alcohol (Magenta nabla). The numbers of measured RBC at 0%, 0.1%, 0.5%, and 5.0% are 80, 58, 84, and 76, respectively. The error bars represent standard deviations. Here we used the constraints strain ε of 1.1, and viscosity ηRBC of 2.5 μN·s/m. The numerical values shown at fitted curves are the shear moduli μRBC (μN/m).
Fig. 12
Fig. 12 Time-dependent shear strain process for irreversible stretching in a creep retardation as a function of time under a step loading of different shear stress, Stot : (a) 9.5, (b) 11.5, (c) 12.6, and (d) 13.4 μN/m. All data were well-fitted by a Sigmoidal curve (solid line)

Tables (2)

Tables Icon

Table 1 Total stretching force and peak surface stress as a function of central beam power shinining on RBC stretched by two counter-propagating fiber optic Bessel-like beams

Tables Icon

Table 2 The averaged parameters from Sigmoidal fit curve to the shear strain process under different Stot loading

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

F g r a d F d r a g = γ R B C v = 6 π s η r R B C v
F f r o n t = P c [ ( n w a t e r ( 1 r ) n R B C + R n R B C ) ] = P c Q f r o n t
F b a c k = P c [ ( 1 r ) ( n R B C ( 1 r ) n w a t e r + R n R B C ) ] = P c Q b a c k
F t o t = ( | F f r o n t | + | F b a c k | 2 ) × 2
σ f r o n t / b a c k = F f r o n t / b a c k A c . b . = n w a t e r Q f r o n t / b a c k P c . b . c A c . b . = n w a t e r Q f r o n t / b a c k I c . b . c
F t o t =( σ f r o n t + σ b a c k ) A c . b . ( p N )
σ p e a k = F t o t A p e a k ( p N / μ m 2 )
R = λ x λ y = l x / l x ' l y / l y '
ε = S μ R B C [ 1 exp ( t τ ) ]
ε = 1 2 ( e x e y ) = 1 2 ( λ x 2 1 2 λ y 2 1 2 ) = 1 4 ( λ x 2 λ y 2 )
t I . S . = τ * ln ( S t o t S t o t ( 1.1 μ R B C ) ) , S t o t > 1.1 μ R B C
ε ( t ) = ε i + ε f ε i 1 + 10 ( t t 0 ) / τ

Metrics