Abstract

We present experimental evidence that the parameters of green light remitted from a human tissue in-vivo strongly depend on skin contact status. In case when the skin is free of any contact, simultaneous recording of imaging photoplethysmogram (iPPG) and electrocardiogram revealed that contactless iPPG fails in correct estimates of the heart rate in almost half of the cases. Meanwhile, the number of successful correlations between ECG and iPPG is significantly increased when the skin is in contact with a glass plate. These observations are in line with the recently proposed model in which pulsatile arteries deform the connective-tissue components of the dermis thus resulting in temporal modulation of the capillary density interacting with slightly penetrating light.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate measurement of the pulse wave delay with imaging photoplethysmography

Alexei A. Kamshilin, Igor S. Sidorov, Laura Babayan, Maxim A. Volynsky, Rashid Giniatullin, and Oleg V. Mamontov
Biomed. Opt. Express 7(12) 5138-5147 (2016)

Skin inhomogeneity as a source of error in remote PPG-imaging

Andreia Vieira Moço, Sander Stuijk, and Gerard de Haan
Biomed. Opt. Express 7(11) 4718-4733 (2016)

Multi-wavelength photoplethysmography method for skin arterial pulse extraction

Jing Liu, Bryan Ping-Yen Yan, Wen-Xuan Dai, Xiao-Rong Ding, Yuan-Ting Zhang, and Ni Zhao
Biomed. Opt. Express 7(10) 4313-4326 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
    [Crossref] [PubMed]
  2. S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J. Biophotonics 6(3), 217–255 (2013).
    [Crossref] [PubMed]
  3. T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
    [Crossref]
  4. Y.-P. Yu, P. Raveendran, and C.-L. Lim, “Dynamic heart rate measurements from video sequences,” Biomed. Opt. Express 6(7), 2466–2480 (2015).
    [Crossref] [PubMed]
  5. S. Xu, L. Sun, and G. K. Rohde, “Robust efficient estimation of heart rate pulse from video,” Biomed. Opt. Express 5(4), 1124–1135 (2014).
    [Crossref] [PubMed]
  6. R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
    [Crossref] [PubMed]
  7. A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram?” Int. J. Cardiol. 166(1), 15–29 (2013).
    [Crossref] [PubMed]
  8. U. Bal, “Non-contact estimation of heart rate and oxygen saturation using ambient light,” Biomed. Opt. Express 6(1), 86–97 (2015).
    [Crossref] [PubMed]
  9. T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
    [Crossref] [PubMed]
  10. M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
    [Crossref] [PubMed]
  11. L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
    [Crossref]
  12. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
    [Crossref] [PubMed]
  13. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
    [Crossref] [PubMed]
  14. M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
    [Crossref] [PubMed]
  15. A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
    [Crossref] [PubMed]
  16. M. Kumar, A. Veeraraghavan, and A. Sabharwal, “DistancePPG: Robust non-contact vital signs monitoring using a camera,” Biomed. Opt. Express 6(5), 1565–1588 (2015).
    [Crossref] [PubMed]
  17. E. B. Blackford and J. R. Estepp, “Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography,” Proc. SPIE 9417, 94172D (2015).
    [Crossref]
  18. J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
    [Crossref] [PubMed]
  19. F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
    [Crossref]
  20. A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
    [Crossref] [PubMed]
  21. V. Teplov, E. Nippolainen, A. A. Makarenko, R. Giniatullin, and A. A. Kamshilin, “Ambiguity of mapping the relative phase of blood pulsations,” Biomed. Opt. Express 5(9), 3123–3139 (2014).
    [Crossref] [PubMed]
  22. Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
    [Crossref] [PubMed]
  23. E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
    [Crossref]
  24. X.-F. Teng and Y.-T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
    [Crossref] [PubMed]
  25. X.-F. Teng and Y.-T. Zhang, “Theoretical study on the effect of sensor contact force on pulse transit time,” IEEE Trans. Biomed. Eng. 54(8), 1490–1498 (2007).
    [Crossref] [PubMed]
  26. C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
    [Crossref] [PubMed]
  27. C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
    [Crossref] [PubMed]
  28. M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
    [Crossref] [PubMed]
  29. A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
    [Crossref] [PubMed]
  30. B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
    [Crossref] [PubMed]

2015 (7)

Y.-P. Yu, P. Raveendran, and C.-L. Lim, “Dynamic heart rate measurements from video sequences,” Biomed. Opt. Express 6(7), 2466–2480 (2015).
[Crossref] [PubMed]

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

U. Bal, “Non-contact estimation of heart rate and oxygen saturation using ambient light,” Biomed. Opt. Express 6(1), 86–97 (2015).
[Crossref] [PubMed]

M. Kumar, A. Veeraraghavan, and A. Sabharwal, “DistancePPG: Robust non-contact vital signs monitoring using a camera,” Biomed. Opt. Express 6(5), 1565–1588 (2015).
[Crossref] [PubMed]

E. B. Blackford and J. R. Estepp, “Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography,” Proc. SPIE 9417, 94172D (2015).
[Crossref]

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

2014 (4)

V. Teplov, E. Nippolainen, A. A. Makarenko, R. Giniatullin, and A. A. Kamshilin, “Ambiguity of mapping the relative phase of blood pulsations,” Biomed. Opt. Express 5(9), 3123–3139 (2014).
[Crossref] [PubMed]

T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
[Crossref]

L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
[Crossref]

S. Xu, L. Sun, and G. K. Rohde, “Robust efficient estimation of heart rate pulse from video,” Biomed. Opt. Express 5(4), 1124–1135 (2014).
[Crossref] [PubMed]

2013 (4)

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J. Biophotonics 6(3), 217–255 (2013).
[Crossref] [PubMed]

A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram?” Int. J. Cardiol. 166(1), 15–29 (2013).
[Crossref] [PubMed]

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

2011 (2)

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
[Crossref] [PubMed]

2010 (1)

M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
[Crossref] [PubMed]

2009 (1)

C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
[Crossref] [PubMed]

2008 (3)

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
[Crossref] [PubMed]

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

2007 (2)

X.-F. Teng and Y.-T. Zhang, “Theoretical study on the effect of sensor contact force on pulse transit time,” IEEE Trans. Biomed. Eng. 54(8), 1490–1498 (2007).
[Crossref] [PubMed]

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

2005 (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

2004 (1)

X.-F. Teng and Y.-T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

2003 (1)

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[Crossref] [PubMed]

1996 (1)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

1966 (1)

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Adar, Y.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Agrba, P. D.

M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
[Crossref] [PubMed]

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

Andreotti, F.

F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
[Crossref]

Aoyagi, T.

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[Crossref] [PubMed]

Asada, H. H.

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

Bal, U.

Baranov, S. A.

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

Ben-Dov, I. Z.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Blackford, E. B.

E. B. Blackford and J. R. Estepp, “Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography,” Proc. SPIE 9417, 94172D (2015).
[Crossref]

Bursztyn, M.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Capdevila, L.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Cerny, M.

L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
[Crossref]

Chan, E. K.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Daly, S. M.

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J. Biophotonics 6(3), 217–255 (2013).
[Crossref] [PubMed]

Drew, C.

C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
[Crossref] [PubMed]

Engelberg, S.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Erofeev, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Estepp, J. R.

E. B. Blackford and J. R. Estepp, “Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography,” Proc. SPIE 9417, 94172D (2015).
[Crossref]

Fallow, B. A.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Fung, Y. C.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Giniatullin, R.

Hoffman, E.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Intaglietta, M.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Kamensky, V. A.

M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
[Crossref] [PubMed]

Kamshilin, A. A.

Kirillin, M. Y.

M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
[Crossref] [PubMed]

Kumar, M.

Leahy, M. J.

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J. Biophotonics 6(3), 217–255 (2013).
[Crossref] [PubMed]

Lim, C.-L.

Lin, W.-H.

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

Maeda, Y.

T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
[Crossref]

Makarenko, A. A.

Malberg, H.

F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
[Crossref]

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

McCombie, D.

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

McDuff, D. J.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

Milner, T. E.

C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
[Crossref] [PubMed]

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

Miridonov, S.

Moreno, J.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Motamedi, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Movellan, J.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Nelson, J. S.

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).
[Crossref] [PubMed]

Nippolainen, E.

Nitzan, M.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Noury, N.

L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
[Crossref]

O’Neil, M.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Parrado, E.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Peng, R.-C.

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

Peter, L.

L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
[Crossref]

Picard, R. W.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

Podolian, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Poh, M.-Z.

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

Protsenko, D.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Ramos-Castro, J.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Raveendran, P.

Reisner, A.

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

Rodas, G.

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

Rohde, G. K.

Romashko, R. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Rylander, C. G.

C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
[Crossref] [PubMed]

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

Saarenheimo, R.

Sabharwal, A.

Schäfer, A.

A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram?” Int. J. Cardiol. 166(1), 15–29 (2013).
[Crossref] [PubMed]

Shalom, E.

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Shaltis, P. A.

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

Sidorov, I. S.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Sorg, B.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Sun, L.

Svaasand, L. O.

Tamura, T.

T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
[Crossref]

Tanaka, H.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Tarumi, T.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Teng, X.-F.

X.-F. Teng and Y.-T. Zhang, “Theoretical study on the effect of sensor contact force on pulse transit time,” IEEE Trans. Biomed. Eng. 54(8), 1490–1498 (2007).
[Crossref] [PubMed]

X.-F. Teng and Y.-T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Teplov, V.

Trumpp, A.

F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
[Crossref]

Vagedes, J.

A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram?” Int. J. Cardiol. 166(1), 15–29 (2013).
[Crossref] [PubMed]

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Vasilev, P. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Veeraraghavan, A.

Verkruysse, W.

Welch, A. J.

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Xu, S.

Yoshida, M.

T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
[Crossref]

Yu, Y.-P.

Zaunseder, S.

F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
[Crossref]

Zhang, Y.-T.

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

X.-F. Teng and Y.-T. Zhang, “Theoretical study on the effect of sensor contact force on pulse transit time,” IEEE Trans. Biomed. Eng. 54(8), 1490–1498 (2007).
[Crossref] [PubMed]

X.-F. Teng and Y.-T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Zhou, X.-L.

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

Zweifach, B. W.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Anesthesiology (1)

A. Reisner, P. A. Shaltis, D. McCombie, and H. H. Asada, “Utility of the photoplethysmogram in circulatory monitoring,” Anesthesiology 108(5), 950–958 (2008).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

Circ. Res. (1)

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Comput. Math. Methods Med. (1)

R.-C. Peng, X.-L. Zhou, W.-H. Lin, and Y.-T. Zhang, “Extraction of heart rate variability from smartphone photoplethysmograms,” Comput. Math. Methods Med. 2015, 516826 (2015).
[Crossref] [PubMed]

Electronics (Basel) (1)

T. Tamura, Y. Maeda, and M. Yoshida, “Wearable photoplethysmographic sensors—past and present,” Electronics (Basel) 3(2), 282–302 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. K. Chan, B. Sorg, D. Protsenko, M. O’Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Sel. Top. Quantum Electron. 2(4), 943–950 (1996).
[Crossref]

IEEE Trans. Biomed. Eng. (2)

M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact, multiparameter physiological measurements using a webcam,” IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011).
[Crossref] [PubMed]

X.-F. Teng and Y.-T. Zhang, “Theoretical study on the effect of sensor contact force on pulse transit time,” IEEE Trans. Biomed. Eng. 54(8), 1490–1498 (2007).
[Crossref] [PubMed]

Int. J. Cardiol. (1)

A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram?” Int. J. Cardiol. 166(1), 15–29 (2013).
[Crossref] [PubMed]

Int. J. Sports Med. (1)

J. Moreno, J. Ramos-Castro, J. Movellan, E. Parrado, G. Rodas, and L. Capdevila, “Facial video-based photoplethysmography to detect HRV at rest,” Int. J. Sports Med. 36(6), 474–480 (2015).
[Crossref] [PubMed]

IRBM (1)

L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” IRBM 35(5), 271–282 (2014).
[Crossref]

J. Anesth. (1)

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

C. Drew, T. E. Milner, and C. G. Rylander, “Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography,” J. Biomed. Opt. 14(6), 064019 (2009).
[Crossref] [PubMed]

J. Biophotonics (2)

M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, “In vivo study of the effect of mechanical compression on formation of OCT images of human skin,” J. Biophotonics 3(12), 752–758 (2010).
[Crossref] [PubMed]

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J. Biophotonics 6(3), 217–255 (2013).
[Crossref] [PubMed]

J. Clin. Monit. Comput. (1)

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, “Mechanical tissue optical clearing devices: Enhancement of light penetration in ex vivo porcine skin and adipose tissue,” Lasers Surg. Med. 40(10), 688–694 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Physiol. Meas. (2)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

X.-F. Teng and Y.-T. Zhang, “The effect of contacting force on photoplethysmographic signals,” Physiol. Meas. 25(5), 1323–1335 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

E. B. Blackford and J. R. Estepp, “Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography,” Proc. SPIE 9417, 94172D (2015).
[Crossref]

Sci. Rep. (1)

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(5), 10494 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. Nitzan, Y. Adar, E. Hoffman, E. Shalom, S. Engelberg, I. Z. Ben-Dov, and M. Bursztyn, “Comparison of systolic blood pressure values obtained by photoplethysmography and by Korotkoff sounds,” Sensors (Basel) 13(11), 14797–14812 (2013).
[Crossref] [PubMed]

Other (1)

F. Andreotti, A. Trumpp, H. Malberg, and S. Zaunseder, “Improved heart rate detection for camera-based photoplethysmography by means of Kalman filtering,” in Proceedings of 35th International Conference on Electronics and Nanotechnology (IEEE, 2015), pp. 428–433.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Layout of the experiment and typical distribution of the blood pulsation amplitude. (a) Photograph of the experimental set-up. (b) An example of a single frame excerpt from the recorded video in the case of the palm contacted with the glass. (c) BPA map averaged during four cardiac cycles for the subject’s palm. The color scale on the right shows the amplitude of the pixel value modulation in percent.
Fig. 2
Fig. 2 BPA maps and PPG waveforms in the “hot” spots. (a) The skin is free of any contact, and (b) the PPG waveform (blue curve) measured in the ROI of 5 × 5 pixels concurrently with the ECG (red curve). (c) The palm is in contact with the glass plate, and (d) the PPG waveform (blue) measured in the ROI placed approximately in the same area of the palm as in (a) shown together with the respective ECG (red). Note that the full scale of PPG axis in graph (d) is 10x that of graph (b). ECG amplitude was kept at the same gain for comparison.
Fig. 3
Fig. 3 Pulsations in the hot spots as a function of the subject’s age. (a) The ratio of the pulsation amplitude measured with and without contact of the palm with the glass. (b) Blood pulsations amplitude in the “hot” spot when the palm is free of any contact. Solid lines show the tendencies of the graphs.
Fig. 4
Fig. 4 Comparison of ECG recordings and PPG waveforms. (a) Oscilloscope traces of the ECG signal (red) and PPG waveform (blue) recorded in the “hottest” spot for skin contacted with the glass. (b) Heart-beat periods calculated from the ECG signal (red curve), and the normalized delay between the R peaks and systole peaks from the PPG waveforms (blue curve) as a function of the beat number.

Metrics