Abstract

Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synthesis and characterization of biocompatible nanodiamond-silk hybrid material

Asma Khalid, Rebecca Lodin, Peter Domachuk, Hu Tao, Jodie E. Moreau, David L. Kaplan, Fiorenzo G. Omenetto, Brant C. Gibson, and Snjezana Tomljenovic-Hanic
Biomed. Opt. Express 5(2) 596-608 (2014)

Hydrogels for targeted waveguiding and light diffusion

Sonja Johannsmeier, Maria L. Torres-Mapa, Daniele Dipresa, Tammo Ripken, Dag Heinemann, and Alexander Heisterkamp
Opt. Mater. Express 9(10) 3925-3940 (2019)

Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor

Linghao Cheng, Cengzhong Wang, Yunyun Huang, Hao Liang, and Bai-Ou Guan
Opt. Express 24(17) 19600-19606 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
    [Crossref] [PubMed]
  2. L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
    [Crossref]
  3. D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
    [Crossref]
  4. M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
    [Crossref]
  5. M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
    [Crossref] [PubMed]
  6. P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
    [Crossref]
  7. Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
    [Crossref] [PubMed]
  8. A. Jain, A. H. J. Yang, and D. Erickson, “Gel-based optical waveguides with live cell encapsulation and integrated microfluidics,” Opt. Lett. 37, 1472–1474 (2012).
    [Crossref] [PubMed]
  9. A. Dupuis, N. Guo, Y. Gao, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy, “Prospective for biodegradable microstructured optical fibers,” Opt. Lett. 32, 109–111 (2007).
    [Crossref]
  10. L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100–3108 (2008).
    [Crossref] [PubMed]
  11. H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
    [Crossref] [PubMed]
  12. H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
    [Crossref] [PubMed]
  13. F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
    [Crossref]
  14. B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
    [Crossref] [PubMed]
  15. V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
    [Crossref] [PubMed]
  16. S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
    [Crossref]
  17. Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
    [Crossref]
  18. S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
    [Crossref]
  19. D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
    [Crossref] [PubMed]
  20. X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
    [Crossref] [PubMed]
  21. Characterization of Optical Fibers (John Wiley & Sons, 2007).
  22. B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
    [Crossref]
  23. O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
    [Crossref] [PubMed]
  24. W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
    [Crossref] [PubMed]
  25. M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
    [Crossref] [PubMed]

2015 (1)

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

2014 (2)

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

2013 (5)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

2012 (3)

A. Jain, A. H. J. Yang, and D. Erickson, “Gel-based optical waveguides with live cell encapsulation and integrated microfluidics,” Opt. Lett. 37, 1472–1474 (2012).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
[Crossref] [PubMed]

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

2011 (3)

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

2010 (1)

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

2009 (2)

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

2008 (3)

L. Ding, R. I. Blackwell, J. F. Künzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100–3108 (2008).
[Crossref] [PubMed]

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

2007 (1)

2004 (1)

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

2002 (1)

B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[Crossref]

1991 (1)

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Aardoom, M. A.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Abrahamsen, L.

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

Amsden, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

Amsden, J. J.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Applegate, M. B.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Barberi-Heyob, M. a.

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

Bechet, D.

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

Bellemin-Laponnaz, C.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Benfenati, V.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Blackwell, R. I.

Bressner, J.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

Burke, K. A.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Cavallini, S.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Cebe, P.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Choi, J. W.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Choi, M.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Cole, J. W.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Dachoswki, L. J.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Dalton, L. R.

B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[Crossref]

Dario, P.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

DeLaney, T. F.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Ding, L.

Domachuk, P.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

Dostalek, J.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Dubois, C.

Dupuis, A.

Egles, C.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Erickson, D.

Etienne, O.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Förster, T.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

Friauf, W. S.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Gao, Y.

Garlick, J. A.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Gil, E. S.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Glatstein, E.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Godbout, N.

Guillemin, F.

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

Guo, N.

Hahn, S. K.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Hanna, C. W.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Hofmann, S.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Hu, X.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Huang, C.-J.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Humar, M.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

Jain, A.

Jen, A. K.

B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[Crossref]

Jonas, U.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Kaplan, D.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Kaplan, D. L.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
[Crossref] [PubMed]

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

Karageorgiou, V.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Kelleners-Smeets, N. W.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Kim, S.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Kluge, J. A.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Knoll, W.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Knox, W. H.

Kuijpers, D. I.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Künzler, J. F.

Lacroix, S.

Leisk, G. G.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Lewis, J. A.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

Li, B.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

Li, Y.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

Liu, X.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

Lovett, M. L.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Ma, B. H.

B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[Crossref]

Malhotra, A.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Marelli, B.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Meinel, L.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Menciassi, A.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

Mitropoulos, A. N.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Mordon, S. R.

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

Moreau, J. E.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Mosterd, K.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Muccini, M.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Natali, M.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Nelemans, P. J.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Nizamoglu, S.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Omenetto, F. G.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
[Crossref] [PubMed]

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

Park, S. H.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Parker, S. T.

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

Partlow, B. P.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Polidori, C.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Preda, R. C.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Rnjak-Kovacina, J.

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Rockwood, D. N.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Roozeboom, M. H.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Rudym, D.

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

Schneider, A.

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Shmelev, K.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Sindelar, W. F.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Skorobogatiy, M.

Smith, P. D.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Strohhöfer, C.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

Sun, L.

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Susilo, E.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

Tang-Schomer, M. D.

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

Tao, H.

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
[Crossref] [PubMed]

Thissen, M. R.

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

Thomas, G. F.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Tien, L. W.

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

Tochner, Z.

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Toffanin, S.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Valdastri, P.

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

Volloch, V.

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

Walsh, A.

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

Wang, X.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

Wei, T.

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Wu, F.

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

Xin, H.

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

Yang, A. H. J.

Yoon, E.

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

Yücel, T.

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Yun, S. H.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Yun, S.-H.

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

Zamboni, R.

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Adv. Funct. Mater. (2)

L. W. Tien, F. Wu, M. D. Tang-Schomer, E. Yoon, F. G. Omenetto, and D. L. Kaplan, “Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes,” Adv. Funct. Mater. 23, 3185–3193 (2013).
[Crossref]

B. P. Partlow, C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan, “Highly Tunable Elastomeric Silk Biomaterials,” Adv. Funct. Mater. 244615–4624 (2014).
[Crossref] [PubMed]

Adv. Mater. (4)

S. T. Parker, P. Domachuk, J. Amsden, J. Bressner, J. A. Lewis, D. L. Kaplan, and F. G. Omenetto, “Biocompatible Silk Printed Optical Waveguides,” Adv. Mater. 21, 2411–2415 (2009).
[Crossref]

M. Choi, M. Humar, S. Kim, and S.-H. Yun, “Step-Index Optical Fiber Made of Biocompatible Hydrogels,” Adv. Mater. 27, 4081–4086 (2015).
[Crossref] [PubMed]

H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk materials - a road to sustainable high technology,” Adv. Mater. 24, 2824–2837 (2012).
[Crossref] [PubMed]

B. H. Ma, A. K. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides : Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden, D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, “Low-threshold blue lasing from silk fibroin thin films,” Appl. Phys. Lett. 101, 091110 (2012).
[Crossref]

Arch. Surg.-Chicago (1)

W. F. Sindelar, T. F. DeLaney, Z. Tochner, G. F. Thomas, L. J. Dachoswki, P. D. Smith, W. S. Friauf, J. W. Cole, and E. Glatstein, “Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study,” Arch. Surg.-Chicago 126, 318–324 (1991).
[Crossref] [PubMed]

Biomacromolecules (1)

X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, and D. L. Kaplan, “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules 12, 1686–1696 (2011).
[Crossref] [PubMed]

Biomater. (1)

Y. Wang, D. Rudym, A. Walsh, and L. Abrahamsen, “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomater. 29, 3415–3428 (2008).
[Crossref]

Biosens. Bioelectron. (1)

Y. Wang, C.-J. Huang, U. Jonas, T. Wei, J. Dostalek, and W. Knoll, “Biosensor based on hydrogel optical waveguide spectroscopy,” Biosens. Bioelectron. 25, 1663–1668 (2010).
[Crossref] [PubMed]

Cancer Treat. Rev. (1)

D. Bechet, S. R. Mordon, F. Guillemin, and M. a. Barberi-Heyob, “Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies,” Cancer Treat. Rev. 40, 229–241 (2014).
[Crossref]

IEEE T. Bio-med. Eng. (1)

P. Valdastri, E. Susilo, T. Förster, C. Strohhöfer, A. Menciassi, and P. Dario, “Wireless Implantable Electronic Platform for Chronic Fluorescent-Based Biosensors,” IEEE T. Bio-med. Eng.,  581846–1854 (2011).
[Crossref]

J. Am. Acad. Dermatol. (1)

M. H. Roozeboom, M. A. Aardoom, P. J. Nelemans, M. R. Thissen, N. W. Kelleners-Smeets, D. I. Kuijpers, and K. Mosterd, “Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up,” J. Am. Acad. Dermatol. 69, 280–287 (2013).
[Crossref] [PubMed]

J. Biomed. Mater. Res. A. (1)

V. Karageorgiou, L. Meinel, S. Hofmann, A. Malhotra, V. Volloch, and D. Kaplan, “Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells,” J. Biomed. Mater. Res. A. 71, 528–537 (2004).
[Crossref] [PubMed]

J. Periodontol (1)

O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. Egles, “Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study,” J. Periodontol.,  80, 1852–1888 (2009).
[Crossref] [PubMed]

Nano Lett. (1)

H. Xin, Y. Li, X. Liu, and B. Li, “Escherichia coli-Based Biophotonic Waveguides,” Nano Lett. 13, 3408–3413 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

F. G. Omenetto and D. L. Kaplan, “A new route for silk,” Nat. Photonics 2, 641–643 (2008).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Nat. Protoc. (1)

D. N. Rockwood, R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan, “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protoc. 6, 1612–1631 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58, R37–R61 (2013).
[Crossref] [PubMed]

Other (1)

Characterization of Optical Fibers (John Wiley & Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Panel A: schematic representation of the construction of silk optical waveguides. To fabricate the core, silk solution is cast into molds (1A) and allowed to dry into films (1B). For the cladding, HRP and H2O2 are added to a silk solution (1B) and aspirated into a PTFE tube (2B). Prior to gelation, the film is inserted into the liquid gel precursor (3). After the gel precursor solidifies, pressure on the syringe ejects the completed waveguide (4). Panel B: photograph of a 9 cm long silk waveguide coupled to a glass optical fiber knotted to show flexibility. Scale bar indicates 1 cm. Inset: Brightfield microscope image of a cross-section of a 3 mm diameter silk waveguide. Scale bar indicates 1 mm. Arrow indicates the silk film core which is 2.9 mm wide and 40 μm thick.
Fig. 2
Fig. 2 Top: Plot showing transmitted power as a function of distance from the coupling fiber. Y-axis is presented on a log scale so the straight line of the data indicates an exponential decline in transmitted power with a consistent decay constant. Error bars indicate 1 standard deviation, n=4. Bottom: Calculated loss per centimeter as a function of distance from the tip of the coupling fiber. High loss near the tip of the coupling fiber is likely due to unguided modes. Error bars indicate 1 standard deviation, n=4.
Fig. 3
Fig. 3 Silk waveguide guiding light in tissue. Light coupled from multimode glass fiber is confined within the silk film core of a 3.5 cm long waveguide. Inset shows the core of the waveguide glowing green after closure of the incisions.

Metrics