Abstract

We have studied the temporal dynamics of the near response (accommodation, convergence and pupil constriction) in healthy subjects when accommodation was performed under natural binocular and monocular viewing conditions. A binocular open-view multi-sensor based on an invisible infrared Hartmann-Shack sensor was used for non-invasive measurements of both eyes simultaneously in real time at 25Hz. Response times for each process under different conditions were measured. The accommodative responses for binocular vision were faster than for monocular conditions. When one eye was blocked, accommodation and convergence were triggered simultaneously and synchronized, despite the fact that no retinal disparity was available. We found that upon the onset of the near target, the unblocked eye rapidly changes its line of sight to fix it on the stimulus while the blocked eye moves in the same direction, producing the equivalent to a saccade, but then converges to the (blocked) target in synchrony with accommodation. This open-view instrument could be further used for additional experiments with other tasks and conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions

Fumio Okuyama, Takashi Tokoro, and Masanao Fujieda
Appl. Opt. 32(22) 4147-4154 (1993)

Analysis of Eye Movements during Monocular and Binocular Fixation*

John Krauskopf, T. N. Cornsweet, and L. A. Riggs
J. Opt. Soc. Am. 50(6) 572-578 (1960)

Accommodative responses to conflicting stimuli

Mark Rosenfield and Kenneth J. Ciuffreda
J. Opt. Soc. Am. A 8(2) 422-427 (1991)

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, “Ueber die accommodation des auges,” Albr. von Graefes Arch. für Ophthalmol. 2(1), 1–74 (1855).
    [Crossref]
  2. G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9(7), 749–755 (1969).
    [Crossref] [PubMed]
  3. L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
    [Crossref] [PubMed]
  4. S. Phillips and L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43(1), 65–89 (1977).
    [Crossref] [PubMed]
  5. E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
    [Crossref] [PubMed]
  6. S. J. Judge, “How is binocularity maintained during convergence and divergence?” Eye (Lond.) 10(2), 172–176 (1996).
    [Crossref] [PubMed]
  7. T. N. Cornsweet and H. D. Crane, “Servo-controlled infrared optometer,” J. Opt. Soc. Am. 60(4), 548–554 (1970).
    [Crossref] [PubMed]
  8. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am. 63(8), 921–928 (1973).
    [Crossref] [PubMed]
  9. G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
    [Crossref] [PubMed]
  10. F. Okuyama, T. Tokoro, and M. Fujieda, “Binocular infrared optometer for measuring accommodation in both eyes simultaneously in natural-viewing conditions,” Appl. Opt. 32(22), 4147–4154 (1993).
    [Crossref] [PubMed]
  11. R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
    [Crossref] [PubMed]
  12. G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
    [Crossref] [PubMed]
  13. S. R. Bharadwaj and C. M. Schor, “Acceleration characteristics of human ocular accommodation,” Vision Res. 45(1), 17–28 (2005).
    [Crossref] [PubMed]
  14. S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
    [Crossref] [PubMed]
  15. S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
    [Crossref] [PubMed]
  16. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17(8), 1388–1398 (2000).
    [Crossref] [PubMed]
  17. M. Kobayashi, N. Nakazawa, T. Yamaguchi, T. Otaki, Y. Hirohara, and T. Mihashi, “Binocular open-view Shack-Hartmann wavefront sensor with consecutive measurements of near triad and spherical aberration,” Appl. Opt. 47(25), 4619–4626 (2008).
    [Crossref] [PubMed]
  18. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4–5), 703–716 (2007).
  19. E. Chirre, P. M. Prieto, and P. Artal, “Binocular open-view instrument to measure aberrations and pupillary dynamics,” Opt. Lett. 39(16), 4773–4775 (2014).
    [Crossref] [PubMed]
  20. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16(26), 21199–21208 (2008).
    [Crossref] [PubMed]
  21. W. R. Miles, “Ocular dominance demonstrated by unconscious sighting,” J. Exp. Psychol. 12(2), 113–126 (1929).
    [Crossref]
  22. T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
    [Crossref] [PubMed]
  23. A. P. A. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
    [Crossref] [PubMed]
  24. S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
    [Crossref] [PubMed]
  25. D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
    [Crossref] [PubMed]
  26. E. J. Fernández and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22(9), 1732–1738 (2005).
    [Crossref] [PubMed]
  27. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response,” Biomed. Opt. Express 1(3), 879–894 (2010).
    [Crossref] [PubMed]
  28. R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
    [Crossref] [PubMed]
  29. Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
    [PubMed]
  30. W. N. Charman, “Near vision, lags of accommodation and myopia,” Ophthalmic Physiol. Opt. 19(2), 126–133 (1999).
    [Crossref] [PubMed]

2014 (1)

2010 (1)

2009 (1)

S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (3)

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4–5), 703–716 (2007).

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

2006 (1)

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[Crossref] [PubMed]

2005 (2)

2003 (1)

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
[Crossref] [PubMed]

2002 (1)

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
[PubMed]

2001 (1)

G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

W. N. Charman, “Near vision, lags of accommodation and myopia,” Ophthalmic Physiol. Opt. 19(2), 126–133 (1999).
[Crossref] [PubMed]

1997 (1)

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[Crossref] [PubMed]

1996 (1)

S. J. Judge, “How is binocularity maintained during convergence and divergence?” Eye (Lond.) 10(2), 172–176 (1996).
[Crossref] [PubMed]

1994 (1)

A. P. A. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

1993 (1)

1989 (1)

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

1980 (1)

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

1978 (1)

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

1977 (1)

S. Phillips and L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43(1), 65–89 (1977).
[Crossref] [PubMed]

1973 (1)

1970 (1)

1969 (1)

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9(7), 749–755 (1969).
[Crossref] [PubMed]

1957 (1)

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

1929 (1)

W. R. Miles, “Ocular dominance demonstrated by unconscious sighting,” J. Exp. Psychol. 12(2), 113–126 (1929).
[Crossref]

1855 (1)

H. Helmholtz, “Ueber die accommodation des auges,” Albr. von Graefes Arch. für Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Artal, P.

Beers, A. P. A.

A. P. A. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Bharadwaj, S. R.

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[Crossref] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Acceleration characteristics of human ocular accommodation,” Vision Res. 45(1), 17–28 (2005).
[Crossref] [PubMed]

Bobier, W. R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

Burns, S. A.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
[PubMed]

Charman, W. N.

G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
[Crossref] [PubMed]

W. N. Charman, “Near vision, lags of accommodation and myopia,” Ophthalmic Physiol. Opt. 19(2), 126–133 (1999).
[Crossref] [PubMed]

Chin, S. S.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response,” Biomed. Opt. Express 1(3), 879–894 (2010).
[Crossref] [PubMed]

S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[Crossref] [PubMed]

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4–5), 703–716 (2007).

Chirre, E.

Ciuffreda, K. J.

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

Cornsweet, T. N.

Crane, H. D.

Eadie, A. S.

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

Fernández, E. J.

Fincham, E. F.

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

Fujieda, M.

Glasser, A.

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
[Crossref] [PubMed]

Goelz, S.

Hampson, K. M.

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Effect of temporal location of correction of monochromatic aberrations on the dynamic accommodation response,” Biomed. Opt. Express 1(3), 879–894 (2010).
[Crossref] [PubMed]

S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[Crossref] [PubMed]

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4–5), 703–716 (2007).

Helmholtz, H.

H. Helmholtz, “Ueber die accommodation des auges,” Albr. von Graefes Arch. für Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Heron, G.

G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
[Crossref] [PubMed]

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

Hirohara, Y.

Irving, E. L.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

Jang, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Judge, S. J.

S. J. Judge, “How is binocularity maintained during convergence and divergence?” Eye (Lond.) 10(2), 172–176 (1996).
[Crossref] [PubMed]

Kasthurirangan, S.

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
[Crossref] [PubMed]

Kenyon, R. V.

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

Kobayashi, M.

Krishnan, V. V.

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

Lee, M.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Liu, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Mallen, E.

S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[Crossref] [PubMed]

Mallen, E. A. H.

Meyers, J. P.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

Mihashi, T.

Miles, W. R.

W. R. Miles, “Ocular dominance demonstrated by unconscious sighting,” J. Exp. Psychol. 12(2), 113–126 (1929).
[Crossref]

Mitchell, D. E.

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9(7), 749–755 (1969).
[Crossref] [PubMed]

Nakazawa, N.

Okuyama, F.

Otaki, T.

Phillips, S.

S. Phillips and L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43(1), 65–89 (1977).
[Crossref] [PubMed]

Prieto, P. M.

Pugh, J. R.

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

Schor, C.

G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
[Crossref] [PubMed]

Schor, C. M.

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[Crossref] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Acceleration characteristics of human ocular accommodation,” Vision Res. 45(1), 17–28 (2005).
[Crossref] [PubMed]

Shirachi, D.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Stark, L.

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

S. Phillips and L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43(1), 65–89 (1977).
[Crossref] [PubMed]

Suryakumar, R.

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

Thompson, K.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
[PubMed]

Tokoro, T.

Ukai, K.

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[Crossref] [PubMed]

Van Der Heijde, G. L.

A. P. A. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

Vargas-Martín, F.

Vilupuru, A. S.

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
[Crossref] [PubMed]

Walton, J.

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

Westheimer, G.

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9(7), 749–755 (1969).
[Crossref] [PubMed]

Winn, B.

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

Wong, J.

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Yamada, T.

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[Crossref] [PubMed]

Yamaguchi, T.

Yang, Y.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
[PubMed]

Albr. von Graefes Arch. für Ophthalmol. (1)

H. Helmholtz, “Ueber die accommodation des auges,” Albr. von Graefes Arch. für Ophthalmol. 2(1), 1–74 (1855).
[Crossref]

Am. J. Optom. Physiol. Opt. (2)

L. Stark, R. V. Kenyon, V. V. Krishnan, and K. J. Ciuffreda, “Disparity vergence: a proposed name for a dominant component of binocular vergence eye movements,” Am. J. Optom. Physiol. Opt. 57(9), 606–609 (1980).
[Crossref] [PubMed]

D. Shirachi, J. Liu, M. Lee, J. Jang, J. Wong, and L. Stark, “Accommodation dynamics I. Range nonlinearity,” Am. J. Optom. Physiol. Opt. 55(9), 631–641 (1978).
[Crossref] [PubMed]

Appl. Opt. (2)

Biomed. Opt. Express (1)

Clin. Exp. Optom. (1)

S. S. Chin, K. M. Hampson, and E. Mallen, “Role of ocular aberrations in dynamic accommodation control,” Clin. Exp. Optom. 92(3), 227–237 (2009).
[Crossref] [PubMed]

Doc. Ophthalmol. (1)

S. Phillips and L. Stark, “Blur: a sufficient accommodative stimulus,” Doc. Ophthalmol. 43(1), 65–89 (1977).
[Crossref] [PubMed]

Eye (Lond.) (1)

S. J. Judge, “How is binocularity maintained during convergence and divergence?” Eye (Lond.) 10(2), 172–176 (1996).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic, and pharmacologically dilated conditions,” Invest. Ophthalmol. Vis. Sci. 43(7), 2508–2512 (2002).
[PubMed]

J. Exp. Psychol. (1)

W. R. Miles, “Ocular dominance demonstrated by unconscious sighting,” J. Exp. Psychol. 12(2), 113–126 (1929).
[Crossref]

J. Mod. Opt. (1)

K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4–5), 703–716 (2007).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

E. F. Fincham and J. Walton, “The reciprocal actions of accommodation and convergence,” J. Physiol. 137(3), 488–508 (1957).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (2)

T. Yamada and K. Ukai, “Amount of defocus is not used as an error signal in the control system of accommodation dynamics,” Ophthalmic Physiol. Opt. 17(1), 55–60 (1997).
[Crossref] [PubMed]

W. N. Charman, “Near vision, lags of accommodation and myopia,” Ophthalmic Physiol. Opt. 19(2), 126–133 (1999).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

G. Heron, B. Winn, J. R. Pugh, and A. S. Eadie, “Twin channel infrared optometer for recording binocular accommodation,” Optom. Vis. Sci. 66(2), 123–129 (1989).
[Crossref] [PubMed]

Vision Res. (8)

G. Westheimer and D. E. Mitchell, “The sensory stimulus for disjunctive eye movements,” Vision Res. 9(7), 749–755 (1969).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Application of video-based technology for the simultaneous measurement of accommodation and vergence,” Vision Res. 47(2), 260–268 (2007).
[Crossref] [PubMed]

G. Heron, W. N. Charman, and C. Schor, “Dynamics of the accommodation response to abrupt changes in target vergence as a function of age,” Vision Res. 41(4), 507–519 (2001).
[Crossref] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Acceleration characteristics of human ocular accommodation,” Vision Res. 45(1), 17–28 (2005).
[Crossref] [PubMed]

S. R. Bharadwaj and C. M. Schor, “Dynamic control of ocular disaccommodation: first and second-order dynamics,” Vision Res. 46(6-7), 1019–1037 (2006).
[Crossref] [PubMed]

A. P. A. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res. 34(21), 2897–2905 (1994).
[Crossref] [PubMed]

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res. 43(27), 2945–2956 (2003).
[Crossref] [PubMed]

R. Suryakumar, J. P. Meyers, E. L. Irving, and W. R. Bobier, “Vergence accommodation and monocular closed loop blur accommodation have similar dynamic characteristics,” Vision Res. 47(3), 327–337 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic view of the binocular HS wavefront sensor. The pupil monitoring path (a) and the measurement path (b) are shown separately. A low pass dichroic mirror (LP-DM) with cut off at 950nm is located before the HS sensor to separate the monitoring (850-900 nm) and the measurements (1050nm) beams.
Fig. 2
Fig. 2 Lateral view of the instrument illustrating the two levels. The far (2.75 m) and near (OLED micro-display, 30 cm) visual targets are located in the line of sight of the subjects aligned with a point midway between the two pupils. The polarizers and the background circle are not shown.
Fig. 3
Fig. 3 Image processing schematics.
Fig. 4
Fig. 4 Examples of exponential fitting of the temporal responses of accommodation in three subjects in binocular (top row) and monocular vision (bottom row). Blue dots: experimental data; red line: fitting. The point corresponding to the onset of accommodation was manually determined.
Fig. 5
Fig. 5 Example of threshold-based transition time evaluation used to quantify the temporal responses of each process of the near triad: accommodation (left), convergence from the relative interpupillary distance oIPD (center) and pupil constriction (right). Black dots: experimental data; blue dotted lines: steady state level for far and near; green solid lines: threshold values corresponding to average ± standard deviation; and the total transition time is demarcated by the red dashed lines.
Fig. 6
Fig. 6 Responses of interpupillary distance, accommodation and pupil diameter as a function of time under binocular (left), monocular DE (center) and NDE (right) for one subject. Top row: normalized relative inter-pupillary distance. Center row up: Spherical equivalent. Center row down: Pupil Diameter. Bottom row: Normalized comparison of the three responses.
Fig. 7
Fig. 7 Average changes in accommodation (by means of an exponential fitting and a threshold method), convergence (center) and pupil constriction (bottom). Green, red and blue symbols represent binocular and monocular DE and NDE viewing conditions respectively. Accommodation and pupil size changes were measured in both eyes for each condition.
Fig. 8
Fig. 8 Examples in one subject of DE (top row) and NDE (center row) accommodation results and pupil displacement (bottom row) when far-to-near accommodation is performed under binocular (left column), DE (center column) and NDE (right column) monocular fixation. Red and blue lines correspond to DE and NDE measurement respectively. In the bottom row, oIPD is represented in black. Two more repetitions in the same subjects are displayed with dotted lighter lines in order to give an idea of repeatability.
Fig. 9
Fig. 9 Schematic representation of the movement of the two eyes when far-to-near accommodation is performed under binocular a) and monocular vision b). Binocular convergence involves simultaneous nasal rotation of both eyes. Conversely, monocular convergence is a two-step process: fast synchronized rotation of both eyes in a saccadic-like movement (1) followed by a slow nasal rotation of the blocked eye synchronized with accommodation (2).
Fig. 10
Fig. 10 Behavior of convergence and accommodation of five subjects with right dominant eye, under binocular (left) and monocular DE (center) and NDE (right) vision. Normalized DE and NDE accommodation is shown in red and blue respective and normalized oIPD in black.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SE= (4 3 × Z 2 0 ) r 2 ,
y= y 0 a×(1 e (t/τ) ),
ΔV= ΔoIPD R×IPD ,

Metrics