Abstract

Current optical coherence tomography (OCT) based micro-angiography is prone to a projection (or tailing) effect due to the high scattering property of blood within overlying patent vessels, creating artifacts that interfere with the interpretation of retinal angiographic results. In this work, the projection effect in OCT micro-angiography is examined and its causality is explained by strong light scattering and photon propagation within blood. A simple practical approach is then introduced to minimize these artifacts presented in the outer retinal avascular space, especially useful for examining clinical cases with choroidal neovascularization (CNV). Demonstrated through in-vivo human posterior eye imaging of healthy and CNV subjects, the proposed method is shown effective to eliminate the projection artifacts in outer retinal space of OCT micro-angiography, resulting in better visualization of the pathological neovascularization when compared with the current common approaches. In addition, it is also shown that the proposed method is applicable to minimize the projection artifacts appearing in deep retinal layers.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent

Marcel T. Bernucci, Conrad W. Merkle, and Vivek J. Srinivasan
Biomed. Opt. Express 9(3) 1020-1040 (2018)

Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography

Li Liu, Simon S. Gao, Steven T. Bailey, David Huang, Dengwang Li, and Yali Jia
Biomed. Opt. Express 6(9) 3564-3576 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
    [Crossref] [PubMed]
  2. T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
    [PubMed]
  3. I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
    [Crossref] [PubMed]
  4. P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
    [Crossref] [PubMed]
  5. M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
    [Crossref] [PubMed]
  6. Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
    [Crossref] [PubMed]
  7. U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
    [Crossref] [PubMed]
  8. S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
    [Crossref] [PubMed]
  9. M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
    [Crossref] [PubMed]
  10. D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
    [Crossref] [PubMed]
  11. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
    [Crossref] [PubMed]
  12. W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
    [Crossref] [PubMed]
  13. B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
    [Crossref] [PubMed]
  14. Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
    [Crossref] [PubMed]
  15. D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
    [Crossref] [PubMed]
  16. E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
    [Crossref] [PubMed]
  17. T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
    [Crossref] [PubMed]
  18. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [Crossref] [PubMed]
  19. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
    [Crossref] [PubMed]
  20. A. Zhang and R. K. Wang, “Feature space optical coherence tomography based micro-angiography,” Biomed. Opt. Express 6(5), 1919–1928 (2015).
    [Crossref] [PubMed]
  21. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [Crossref] [PubMed]
  22. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
    [PubMed]
  23. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
    [Crossref] [PubMed]
  24. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
    [Crossref] [PubMed]
  25. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [Crossref] [PubMed]
  26. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  27. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [Crossref] [PubMed]
  28. V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002).
    [Crossref] [PubMed]
  29. M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
    [Crossref] [PubMed]
  30. G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
    [Crossref] [PubMed]
  31. X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
    [Crossref] [PubMed]
  32. M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
    [Crossref] [PubMed]

2015 (4)

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
[Crossref] [PubMed]

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

A. Zhang and R. K. Wang, “Feature space optical coherence tomography based micro-angiography,” Biomed. Opt. Express 6(5), 1919–1928 (2015).
[Crossref] [PubMed]

2014 (6)

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

2013 (3)

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

2010 (2)

2009 (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

2006 (2)

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

2003 (2)

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

2002 (2)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002).
[Crossref] [PubMed]

1998 (2)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

1997 (1)

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Adamis, A. P.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

Adhi, M.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Ambati, B. K.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

Ambati, J.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

An, L.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

Baeza, A.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Baeza, M. L.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Baran, U.

U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Bouma, B. E.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Cable, A.

Cadotte, D. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Chao, J. R.

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

Chen, Y.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Chen, Z.

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

Choi, W.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Choi, W. J.

W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

Duker, J. S.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Durbin, M. K.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Dziennis, S.

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

Enfield, J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Fingler, J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Francis, P.

Fraser, S. E.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15(20), 12636–12653 (2007).
[Crossref] [PubMed]

Friebel, M.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Fujimoto, J. G.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Fukumura, D.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Fukushima, I.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Gareau, D.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

Gregori, G.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Hamilton, P.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Holz, F. G.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Hong, Y.

Hong, Y. J.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

Hornegger, J.

Huang, D.

Huang, Y.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Ianchulev, S.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

Iwasaki, T.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

Jain, R. K.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Jayaraman, V.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Jia, Y.

Jiang, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

Jonathan, E.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Ju, M. J.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

Khurana, M.

Kim, D. Y.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Kishimoto, N.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Kraus, M. F.

Kusaka, K.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Lai, T. Y.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Lanzetta, P.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Laron, M.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Leahy, M. J.

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Lee, B.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Lee, B. H.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

Leung, M. K. K.

Leveziel, N.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Li, Y.

U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Liew, G.

G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
[Crossref] [PubMed]

Lim, J. I.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Lindmo, T.

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

Liu, J. J.

López-Sáez, M. P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Lu, C. D.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Luk, T. W.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Mahmud, M. S.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Makita, S.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

Mariampillai, A.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
[Crossref] [PubMed]

Meinke, M.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Milner, T. E.

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

Mitchell, P.

G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
[Crossref] [PubMed]

Miura, M.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

Moriyama, E. H.

Morse, L. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Moult, E.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Müller, G.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Munce, N. R.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Nelson, J. S.

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

Nishimura, T.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Ohkuma, H.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Ohno-Matsui, K.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Ordoqui, E.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Park, S. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Potsaid, B.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

Qin, J.

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

Roggan, A.

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

Rosenfeld, P. J.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Sainza, T.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Schwartz, D.

Schwartz, D. M.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Sharma, U.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Shi, L.

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

Smithies, D. J.

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

Standish, B. A.

Stanga, P. E.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Stetson, P. F.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Subhash, H.

Sun, C.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Takahashi, K.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Tan, O.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Thorell, M. R.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Tokayer, J.

Tornero, P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Tuchin, V. V.

Tufail, A.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Uyama, M.

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Vakoc, B. J.

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Vitkin, I. A.

Vuong, B.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Waheed, N. K.

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Wang, H. Q.

W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

Wang, J. J.

G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
[Crossref] [PubMed]

Wang, R. K.

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
[Crossref] [PubMed]

A. Zhang and R. K. Wang, “Feature space optical coherence tomography based micro-angiography,” Biomed. Opt. Express 6(5), 1919–1928 (2015).
[Crossref] [PubMed]

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express 18(8), 8220–8228 (2010).
[Crossref] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[Crossref] [PubMed]

V. V. Tuchin, X. Xu, and R. K. Wang, “Dynamic optical coherence tomography in studies of optical clearing, sedimentation, and aggregation of immersed blood,” Appl. Opt. 41(1), 258–271 (2002).
[Crossref] [PubMed]

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

Wang, Y.

Werner, J. S.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Wilson, B. C.

Wilson, D. J.

Wong, T. Y.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
[Crossref] [PubMed]

Xu, X.

Yamanari, M.

Yang, C.

Yang, V. X.

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

Yang, V. X. D.

Yasuno, Y.

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[Crossref] [PubMed]

Yatagai, T.

Yin, X.

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

Yoo, S. H.

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

Yu, H. G.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Zawadzki, R. J.

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Zhang, A.

Zhang, Q.

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

Zubeldia, J. M.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Ann. Allergy Asthma Immunol. (1)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, M. L. Baeza, and M. L. Baeza, “Fluorescein-Induced Allergic Reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (1)

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[PubMed]

Circ Cardiovasc Imaging (1)

G. Liew, J. J. Wang, P. Mitchell, and T. Y. Wong, “Retinal vascular imaging: a new tool in microvascular disease research,” Circ Cardiovasc Imaging 1(2), 156–161 (2008).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. J. Hong, M. Miura, S. Makita, M. J. Ju, B. H. Lee, T. Iwasaki, and Y. Yasuno, “Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography,” Invest. Ophthalmol. Vis. Sci. 54(5), 3621–3631 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

W. J. Choi, H. Q. Wang, and R. K. Wang, “OCT microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue,” J. Biomed. Opt. 19(5), 056003 (2014).
[Crossref] [PubMed]

X. Yin, J. R. Chao, and R. K. Wang, “User-guided segmentation for volumetric retinal optical coherence tomography images,” J. Biomed. Opt. 19(8), 086020 (2014).
[Crossref] [PubMed]

M. S. Mahmud, D. W. Cadotte, B. Vuong, C. Sun, T. W. Luk, A. Mariampillai, and V. X. Yang, “Review of speckle and phase variance optical coherence tomography to visualize microvascular networks,” J. Biomed. Opt. 18(5), 050901 (2013).
[Crossref] [PubMed]

M. Friebel, A. Roggan, G. Müller, and M. Meinke, “Determination of optical properties of human blood in the spectral range 250 to 1100 nm using monte carlo simulations with hematocrit-dependent effective scattering phase functions,” J. Biomed. Opt. 11(3), 034021 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J. Biophotonics 4(9), 583–587 (2011).
[PubMed]

Jpn. J. Ophthalmol. (1)

I. Fukushima, K. Kusaka, K. Takahashi, N. Kishimoto, T. Nishimura, H. Ohkuma, and M. Uyama, “Comparison of indocyanine green and fluorescein angiography of choroidal neovascularization,” Jpn. J. Ophthalmol. 41(5), 284–296 (1997).
[Crossref] [PubMed]

Lasers Surg. Med. (1)

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med. 43(2), 122–129 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med. 15(10), 1219–1223 (2009).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

B. J. Vakoc, D. Fukumura, R. K. Jain, and B. E. Bouma, “Cancer imaging by optical coherence tomography: preclinical progress and clinical potential,” Nat. Rev. Cancer 12(5), 363–368 (2012).
[Crossref] [PubMed]

Neurophotonics (1)

U. Baran, Y. Li, and R. K. Wang, “Vasodynamics of pial and penetrating arterioles in relation to arteriolo-arteriolar anastomosis after focal stroke,” Neurophotonics 2(2), 025006 (2015).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (2)

M. R. Thorell, Q. Zhang, Y. Huang, L. An, M. K. Durbin, M. Laron, U. Sharma, P. F. Stetson, G. Gregori, R. K. Wang, and P. J. Rosenfeld, “Swept-Source OCT Angiography of Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 45(5), 369–380 (2014).
[Crossref] [PubMed]

E. Moult, W. Choi, N. K. Waheed, M. Adhi, B. Lee, C. D. Lu, V. Jayaraman, B. Potsaid, P. J. Rosenfeld, J. S. Duker, and J. G. Fujimoto, “Ultrahigh-Speed Swept-Source OCT Angiography in Exudative AMD,” Ophthalmic Surg. Lasers Imaging Retina 45(6), 496–505 (2014).
[Crossref] [PubMed]

Ophthalmology (2)

D. M. Schwartz, J. Fingler, D. Y. Kim, R. J. Zawadzki, L. S. Morse, S. S. Park, S. E. Fraser, and J. S. Werner, “Phase-variance optical coherence tomography: a technique for noninvasive angiography,” Ophthalmology 121(1), 180–187 (2014).
[Crossref] [PubMed]

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology 110(1), 15–23 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (2)

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: A Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[Crossref] [PubMed]

T. Lindmo, D. J. Smithies, Z. Chen, J. S. Nelson, and T. E. Milner, “Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43(10), 3045–3064 (1998).
[Crossref] [PubMed]

PLoS One (1)

Y. Li, U. Baran, and R. K. Wang, “Application of Thinned-Skull Cranial Window to Mouse Cerebral Blood Flow Imaging Using Optical Microangiography,” PLoS One 9(11), e113658 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Y. Kim, J. Fingler, R. J. Zawadzki, S. S. Park, L. S. Morse, D. M. Schwartz, S. E. Fraser, and J. S. Werner, “Optical imaging of the chorioretinal vasculature in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 110(35), 14354–14359 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Dziennis, J. Qin, L. Shi, and R. K. Wang, “Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain,” Sci. Rep. 5, 10051 (2015), doi:.
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

J. Ambati, B. K. Ambati, S. H. Yoo, S. Ianchulev, and A. P. Adamis, “Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies,” Surv. Ophthalmol. 48(3), 257–293 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Example of projection effect. (a) Cross-sectional OCT B-scan image; and (b) corresponding angiographic results by the use of fsOMAG. The yellow circles denote elongated blood vessel shape indicating the first type of projection effect. The red arrows denote the artifacts in the RPE complex, which would make it difficult to interpret the angiography of outer retinal space. Scale bar: 200 µm.
Fig. 2
Fig. 2 The projection effect appeared in both magnitude and phase based variance algorithms. (a) The intensity decorrelation results of the same transversal position as in Fig. 1, and (b) corresponding phase variance results. The red arrows indicate both high decorrelation value and phase variance at the locations where the projection effect occurs. Scale bar: 200 µm.
Fig. 3
Fig. 3 The illustration of OCT signal at one depth determined coherently by the contributions of all the backscattered photons.
Fig. 4
Fig. 4 Demonstration of the removal of projection artifacts using the data set acquired from a healthy subject. (a) Representative B-scan image indicating the inner retina and outer retina; S: Superficial retina; D: Deep retina; R: Retinal space; O: Outer retinal space; Oa: Outer retina above IS/OS. Scale bar: 200 µm; (b) Retinal vasculature network, that is used removal of projection artifacts; (c) Direct result obtained from outer retinal avascular space; (d) Result obtained by excluding the signals from IS/OS and RPE; (e) Results from outer retinal avascular space after removal of projection artifacts; (f) Superficial retinal vascular network; (g) Direct results of the deep retinal layer; and (h) Results of the deep retinal layer after removal of projection artifacts.
Fig. 5
Fig. 5 The FA and OCT images of Type 1 CNV case. (a) The FA image of a 50-year-old woman (right eye). The yellow box denotes the OCT micro-angiography scanning area; (b) The zoomed OCT scanning area; (c) OCT B-scan image corresponding to the location indicated by the horizontal yellow dashed line in (b); (d) OCT B-scan image corresponding to the location indicated by the vertical yellow dashed line in (b); S: Superficial retina; D: Deep retina; R: Retinal space; O: Outer retina. Scale bar: 200 µm.
Fig. 6
Fig. 6 The OCT micro-angiography of the Type 1 CNV case over the area indicated by the yellow box in Fig. 5(a). (a) Direct OCTA of the entire outer retina; (b) Direct OCTA of the outer retinal space but above the IS/OS; (c) OCTA of retinal space; (d) OCTA of the outer retinal space after removing the projection artifacts due to retinal vessels; (e) OCTA of the outer retina but above the IS/OS after removing the projection artifacts due to retinal vessels; (f) OCTA of the superficial retinal layer; (g) OCTA of the deep retinal layer; (h) OCTA of the deep retinal layer after projection artifact removal.
Fig. 7
Fig. 7 The OCTA of CNV case of a 50-year-old woman diagnosed with PCV (left eye). (a) The early stage ICGA; (b) The late stage ICGA with the yellow box denoting the OCT micro-angiography scanning area; (c) The FA image; (d) The wide-field OCT B-scan image at the location indicated by the green line in Fig. 7(c); Scale bar: 500 µm; (e) OCT angiographic results before and (f) after applying the algorithm to remove projection artifacts.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A S ( x,y )= A T ( x,y )α A R ( x,y )
log[ A S ( x,y ) ]=log[ A T ( x,y ) ]+log[ α A R ( x,y ) ]
log[ A T ( x,y ) ]=log[ A S ( x,y ) ]log[ α A R ( x,y ) ]
log[ A T ( x,y ) ]=log[ A S ( x,y ) ]{ 1Norm log[ A R ( x,y ) ] }
log[ A T ( x,y ) ]=log[ A S ( x,y ) ]{ 1Norm log[ A R ( x,y ) ] { 1Norm log[ I S ( x,y ) ] } }

Metrics