Abstract

A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle

Sarah C. Irvine, David M. Paganin, R. Aidan Jamison, Stephen Dubsky, and Andreas Fouras
Opt. Express 18(3) 2368-2379 (2010)

Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling

Barry Vuong, Helen Genis, Ronnie Wong, Joel Ramjist, Jamil Jivraj, Hamza Farooq, Cuiru Sun, and Victor X.D. Yang
Biomed. Opt. Express 5(12) 4405-4416 (2014)

Cerebral capillary velocimetry based on temporal OCT speckle contrast

Woo June Choi, Yuandong Li, Wan Qin, and Ruikang K. Wang
Biomed. Opt. Express 7(12) 4859-4873 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
    [Crossref]
  2. G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
    [Crossref] [PubMed]
  3. J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).
  4. S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
    [Crossref] [PubMed]
  5. P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
    [Crossref]
  6. R. M. Nerem and W. A. Seed, “An in vivo study of aortic flow disturbances,” Cardiovas. Res. 6, 1–14 (1972).
    [Crossref]
  7. D. Bluestein and L. Niu, “Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus,” Annals of Biomed. Eng. 25, 344–356 (1997).
    [Crossref]
  8. S. Kenjeres, “Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications,” J. Phys. Conf. Ser. 530, 012006 (2014).
    [Crossref]
  9. P. Vilela and a. Goulão, “Ischemic stroke: carotid and vertebral artery disease,” European Radiology 15, 427–433 (2005).
    [Crossref] [PubMed]
  10. S. Kenjeres and A. D. Loor, “Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation,” J. Roy. Soc. 11, 1–13 (2014).
  11. G. S. Giddens D. and C. Zarins, “The role of fluid mechanics in the localization and detection of atherosclerosis,” J. Biomech. Eng. 115588 (1993).
    [PubMed]
  12. S. E. Charm and G. S. Kurland, Blood Flow and Microcirculation (WileyNew York, 1974).
  13. S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics 533, 297–327 (2005).
    [Crossref]
  14. C. Caro, The Mechanics of the Circulation (Cambridge University Press, 2012).
  15. P. Sobieszczyk and J. Beckman, “Carotid artery disease,” Circulation 114, e244–e247 (2006).
    [Crossref] [PubMed]
  16. J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
    [Crossref] [PubMed]
  17. Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
    [PubMed]
  18. J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
    [Crossref]
  19. M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).
  20. Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
    [Crossref] [PubMed]
  21. J. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  22. J. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications 116, 36–42 (1995).
    [Crossref]
  23. V. L. T. S. W. Draijer M and E. Hondebrink, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24, 639–651 (2009).
    [Crossref]

2014 (2)

S. Kenjeres, “Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications,” J. Phys. Conf. Ser. 530, 012006 (2014).
[Crossref]

S. Kenjeres and A. D. Loor, “Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation,” J. Roy. Soc. 11, 1–13 (2014).

2013 (2)

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
[Crossref]

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

2011 (1)

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

2009 (1)

V. L. T. S. W. Draijer M and E. Hondebrink, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24, 639–651 (2009).
[Crossref]

2007 (1)

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

2006 (1)

P. Sobieszczyk and J. Beckman, “Carotid artery disease,” Circulation 114, e244–e247 (2006).
[Crossref] [PubMed]

2005 (3)

S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics 533, 297–327 (2005).
[Crossref]

P. Vilela and a. Goulão, “Ischemic stroke: carotid and vertebral artery disease,” European Radiology 15, 427–433 (2005).
[Crossref] [PubMed]

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

2003 (1)

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

1997 (1)

D. Bluestein and L. Niu, “Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus,” Annals of Biomed. Eng. 25, 344–356 (1997).
[Crossref]

1995 (2)

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

J. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications 116, 36–42 (1995).
[Crossref]

1994 (1)

Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
[PubMed]

1993 (1)

G. S. Giddens D. and C. Zarins, “The role of fluid mechanics in the localization and detection of atherosclerosis,” J. Biomech. Eng. 115588 (1993).
[PubMed]

1981 (1)

J. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

1972 (1)

R. M. Nerem and W. A. Seed, “An in vivo study of aortic flow disturbances,” Cardiovas. Res. 6, 1–14 (1972).
[Crossref]

Adrian, R. J.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
[Crossref]

Arlt, M.

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Beckman, J.

P. Sobieszczyk and J. Beckman, “Carotid artery disease,” Circulation 114, e244–e247 (2006).
[Crossref] [PubMed]

Blackburn, H. M.

S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics 533, 297–327 (2005).
[Crossref]

Bluestein, D.

D. Bluestein and L. Niu, “Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus,” Annals of Biomed. Eng. 25, 344–356 (1997).
[Crossref]

Brands, P.

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

Briers, J.

J. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications 116, 36–42 (1995).
[Crossref]

J. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Caracciolo, G.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Caro, C.

C. Caro, The Mechanics of the Circulation (Cambridge University Press, 2012).

Charm, S. E.

S. E. Charm and G. S. Kurland, Blood Flow and Microcirculation (WileyNew York, 1974).

Chen, J.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Cheng, R.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Chew, T.

Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
[PubMed]

Chew, Y.

Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
[PubMed]

Crouse, J. R.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Dávila-Román, V. G.

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

Davis, D. H.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

de las Fuentes, L.

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

Dong, L.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Draijer M, V. L. T. S. W.

V. L. T. S. W. Draijer M and E. Hondebrink, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24, 639–651 (2009).
[Crossref]

Elsinga, G. E.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
[Crossref]

Espeland, M. A.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Faddis, M. N.

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

Giddens D., G. S.

G. S. Giddens D. and C. Zarins, “The role of fluid mechanics in the localization and detection of atherosclerosis,” J. Biomech. Eng. 115588 (1993).
[PubMed]

Glang, R.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Gleva, M. J.

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

Goliasch, G.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Goscinska-Bis, K.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Goulão, a.

P. Vilela and a. Goulão, “Ischemic stroke: carotid and vertebral artery disease,” European Radiology 15, 427–433 (2005).
[Crossref] [PubMed]

Hoeks, A.

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

Hofstra, L.

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

Hondebrink, E.

V. L. T. S. W. Draijer M and E. Hondebrink, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24, 639–651 (2009).
[Crossref]

Hunter, K.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Kasprzak, P.

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Kenjeres, S.

S. Kenjeres, “Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications,” J. Phys. Conf. Ser. 530, 012006 (2014).
[Crossref]

S. Kenjeres and A. D. Loor, “Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation,” J. Roy. Soc. 11, 1–13 (2014).

Kompenhans, J.

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).

Kurland, G. S.

S. E. Charm and G. S. Kurland, Blood Flow and Microcirculation (WileyNew York, 1974).

Lanning, C.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Loor, A. D.

S. Kenjeres and A. D. Loor, “Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation,” J. Roy. Soc. 11, 1–13 (2014).

Low, H.

Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
[PubMed]

Mazzaro, L.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Mercuri, M. F.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Metz, C.

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Moritz, S.

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Nakabo, A.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Narula, J.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Nerem, R. M.

R. M. Nerem and W. A. Seed, “An in vivo study of aortic flow disturbances,” Cardiovas. Res. 6, 1–14 (1972).
[Crossref]

Niu, L.

D. Bluestein and L. Niu, “Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus,” Annals of Biomed. Eng. 25, 344–356 (1997).
[Crossref]

Pedrizzetti, G.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Raffel, M.

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).

Reneman, R.

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

Ryan, S. J.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Saha, S. P.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Seed, W. A.

R. M. Nerem and W. A. Seed, “An in vivo study of aortic flow disturbances,” Cardiovas. Res. 6, 1–14 (1972).
[Crossref]

Sengupta, P. P.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Shandas, R.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Shang, Y.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Sherwin, S. J.

S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics 533, 297–327 (2005).
[Crossref]

Smolka, G.

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Sobieszczyk, P.

P. Sobieszczyk and J. Beckman, “Carotid artery disease,” Circulation 114, e244–e247 (2006).
[Crossref] [PubMed]

Taeger, K.

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Tang, R.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Terry, J. G.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Vieira, J. L.

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

Vilela, P.

P. Vilela and a. Goulão, “Ischemic stroke: carotid and vertebral artery disease,” European Radiology 15, 427–433 (2005).
[Crossref] [PubMed]

Waggoner, A. D.

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

Webster, S.

J. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications 116, 36–42 (1995).
[Crossref]

Wereley, S.

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).

Westerweel, J.

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
[Crossref]

Willert, C.

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).

Yu, G.

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Zarins, C.

G. S. Giddens D. and C. Zarins, “The role of fluid mechanics in the localization and detection of atherosclerosis,” J. Biomech. Eng. 115588 (1993).
[PubMed]

Zhang, F.

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

Anesthesiology (1)

S. Moritz, P. Kasprzak, M. Arlt, K. Taeger, and C. Metz, “Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomya comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials,” Anesthesiology 107, 563–569 (2007).
[Crossref] [PubMed]

Annals of Biomed. Eng. (1)

D. Bluestein and L. Niu, “Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus,” Annals of Biomed. Eng. 25, 344–356 (1997).
[Crossref]

Annals of Biomedical Engineering (1)

Y. Chew, T. Chew, and H. Low, “Particle image velocimetry in the investigation of flow past artificial heart valves,” Annals of Biomedical Engineering 22307 (1994).
[PubMed]

Annual Review of Fluid Mechanics (1)

J. Westerweel, G. E. Elsinga, and R. J. Adrian, “Particle Image Velocimetry for Complex and Turbulent Flows,” Annual Review of Fluid Mechanics 45, 409–436 (2013).
[Crossref]

Cardiovas. Res. (1)

R. M. Nerem and W. A. Seed, “An in vivo study of aortic flow disturbances,” Cardiovas. Res. 6, 1–14 (1972).
[Crossref]

Circulation (2)

P. Sobieszczyk and J. Beckman, “Carotid artery disease,” Circulation 114, e244–e247 (2006).
[Crossref] [PubMed]

J. G. Terry, R. Tang, M. A. Espeland, D. H. Davis, J. L. Vieira, M. F. Mercuri, and J. R. Crouse, “Carotid arterial structure in patients with documented coronary artery disease and disease-free control subjects,” Circulation 107, 1146–1151 (2003).
[Crossref] [PubMed]

European Radiology (1)

P. Vilela and a. Goulão, “Ischemic stroke: carotid and vertebral artery disease,” European Radiology 15, 427–433 (2005).
[Crossref] [PubMed]

J. Am. College Cardiol. (1)

A. D. Waggoner, M. N. Faddis, M. J. Gleva, L. de las Fuentes, and V. G. Dávila-Román, “Improvements in left ventricular diastolic function after cardiac resynchronization therapy are coupled to response in systolic performance,” J. Am. College Cardiol. 46, 2244–2249 (2005).
[Crossref]

J. Biomech. Eng. (1)

G. S. Giddens D. and C. Zarins, “The role of fluid mechanics in the localization and detection of atherosclerosis,” J. Biomech. Eng. 115588 (1993).
[PubMed]

J. Phys. Conf. Ser. (1)

S. Kenjeres, “Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications,” J. Phys. Conf. Ser. 530, 012006 (2014).
[Crossref]

J. Roy. Soc. (1)

S. Kenjeres and A. D. Loor, “Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation,” J. Roy. Soc. 11, 1–13 (2014).

JACC. Cardiovascular Imaging (1)

G. Goliasch, K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta, “CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry,” JACC. Cardiovascular Imaging 6, 704–713 (2013).
[Crossref] [PubMed]

Journal of Fluid Mechanics (1)

S. J. Sherwin and H. M. Blackburn, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows,” Journal of Fluid Mechanics 533, 297–327 (2005).
[Crossref]

Lasers Med. Sci. (1)

V. L. T. S. W. Draijer M and E. Hondebrink, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24, 639–651 (2009).
[Crossref]

Opt. Commun. (1)

J. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Optics Communications (1)

J. Briers and S. Webster, “Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields,” Optics Communications 116, 36–42 (1995).
[Crossref]

Phys. Med. Biol. (1)

Y. Shang, R. Cheng, L. Dong, S. J. Ryan, S. P. Saha, and G. Yu, “Cerebral monitoring during carotid endarterectomy using near-infrared diffuse optical spectroscopies and electroencephalogram,” Phys. Med. Biol. 56, 3015 (2011).
[Crossref] [PubMed]

Ultrasound in Med. Biol. (1)

P. Brands, A. Hoeks, L. Hofstra, and R. Reneman, “A noninvasive method to estimate wall shear rate using ultrasound,” Ultrasound in Med. Biol. 21, 171–185 (1995).
[Crossref]

Other (4)

J. Chen, F. Zhang, L. Mazzaro, C. Lanning, R. Glang, K. Hunter, and R. Shandas, “Direct echo piv flow vector mapping on ultrasound dicom images,” IEEE International Ultrasonics Symposium Proceedings, 1084–1087 (2010).

C. Caro, The Mechanics of the Circulation (Cambridge University Press, 2012).

S. E. Charm and G. S. Kurland, Blood Flow and Microcirculation (WileyNew York, 1974).

M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide, Experimental Fluid Mechanics (Springer BerlinHeidelberg, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The schematic of the experimental flow loop.

Fig. 2
Fig. 2

Straight cylindrical flow phantom: a) in water and b) with index matched solution.

Fig. 3
Fig. 3

Flow phantom of patient based carotid artery: a) in water and b) with index matched solution.

Fig. 4
Fig. 4

The experimental setup illuminated during PIV measurements.

Fig. 5
Fig. 5

Two typical PIV images used for data analysis. The two characteristic cross-sections can be seen with tracer particles arise from two arms of the carotid artery phantom.

Fig. 6
Fig. 6

A typical laser speckle raw image along the carotid artery phantom.

Fig. 7
Fig. 7

Final velocity map of the carotid artery phantom. Color indicates the velocity vectors amplitude. Vrel is the dimensionless velocity defined as ratio of velocity and mean inflow velocity.

Fig. 8
Fig. 8

Contour profile through the carotid artery phantom. The length scale is in meter for both axes. The left set of slices was made by using the XZ-planes while the right set of slices was made using the XY-planes. Again Vrel is the dimensionless velocity.

Fig. 9
Fig. 9

Time sequence of (a) PIV and (c) LASCA generated from images recorded during pulsatile flow in the cylindrical phantom. Frequency spectrum extracted from the time sequence for (b) PIV and (d) LASCA measurements.

Fig. 10
Fig. 10

a) The selected zones for analysis from Carotid Aretry Phantom. b) Time sequence for PIV, c) Time sequence for LASCA, in zone 2.

Fig. 11
Fig. 11

a) – e) Spectral analysis of LASCA and f) PIV in five different zones along the carotid artery phantom.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Re = v s L ν
α = R ω ν
γ = Q I C A Q E C A
s s V Δ t d I A < 0.25
K = σ < I > .

Metrics