Abstract

Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello et al., Neuron 82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multimodal optogenetic neural interfacing device fabricated by scalable optical fiber drawing technique

Christopher J. Davey, Alexander Argyros, Simon C. Fleming, and Samuel G. Solomon
Appl. Opt. 54(34) 10068-10072 (2015)

Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation

Niall McAlinden, David Massoubre, Elliot Richardson, Erdan Gu, Shuzo Sakata, Martin D. Dawson, and Keith Mathieson
Opt. Lett. 38(6) 992-994 (2013)

Optical stimulation of neural tissue in vivo

Jonathon Wells, Chris Kao, Karthik Mariappan, Jeffrey Albea, E. Duco Jansen, Peter Konrad, and Anita Mahadevan-Jansen
Opt. Lett. 30(5) 504-506 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
    [Crossref] [PubMed]
  2. F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
    [Crossref] [PubMed]
  3. L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
    [Crossref] [PubMed]
  4. A. Vaziri and V. Emiliani, “Reshaping the optical dimension in optogenetics,” Curr. Opin. Neurobiol. 22(1), 128–137 (2012).
    [Crossref] [PubMed]
  5. M. F. Bear, B. W. Conners, and M. A. Paradiso, Neuroscience. Exploring the Brain, 3rd ed. (Lippincott Williams and Wilkins, Philadelphia, 2007).
  6. N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
    [Crossref] [PubMed]
  7. K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci. 13(4), 251–266 (2012).
    [Crossref] [PubMed]
  8. M. Pisanello, F. Pisanello, L. Sileo, and M. De Vittorio, “Photonic technologies for optogenetics,” in Transparent Optical Networks (ICTON),201416th International Conference on, 2014), 1–4.
    [Crossref]
  9. M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
    [Crossref] [PubMed]
  10. L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
    [Crossref] [PubMed]
  11. S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
    [Crossref] [PubMed]
  12. T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
    [Crossref] [PubMed]
  13. C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
    [Crossref]
  14. E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
    [Crossref] [PubMed]
  15. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
    [Crossref] [PubMed]
  16. K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
    [Crossref] [PubMed]
  17. M. Schwaerzle, P. Elmlinger, O. Paul, and P. Ruther, “Miniaturized 3x3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection,” in Micro Electro Mechanical Systems (MEMS),201528th IEEE International Conference on, 2015), 162–165.
  18. Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
    [Crossref] [PubMed]
  19. V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
    [Crossref] [PubMed]
  20. S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
    [Crossref] [PubMed]
  21. A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
    [Crossref] [PubMed]
  22. F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
    [Crossref] [PubMed]
  23. L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
    [Crossref]
  24. R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw Hill, New York, 1992).
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012).
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  27. A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
    [Crossref]
  28. Filmetrics, “Filmetrics refractive index database,” ( http://www.filmetrics.com/refractive-index-database , 2015).
  29. S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
    [Crossref]
  30. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
    [Crossref] [PubMed]
  31. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
    [Crossref]
  32. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14(7), 1538–1542 (1975).
    [Crossref] [PubMed]
  33. M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step-index optical fibers,” IEEE Trans. Microw. Theory Tech. 25(7), 577–585 (1977).
    [Crossref]
  34. G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
    [Crossref]
  35. S. Savović and A. Djordjevich, “Influence of numerical aperture on mode coupling in step-index plastic optical fibers,” Appl. Opt. 43(29), 5542–5546 (2004).
    [Crossref] [PubMed]
  36. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  37. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50(5), 4094–4106 (1994).
    [Crossref] [PubMed]
  38. M. Miyagi and G. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9(1), 51–60 (1977).
    [Crossref]
  39. W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
    [Crossref]
  40. A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
    [Crossref] [PubMed]
  41. O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
    [Crossref] [PubMed]

2015 (7)

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
[Crossref] [PubMed]

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

2014 (4)

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
[Crossref] [PubMed]

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

2013 (1)

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

2012 (5)

K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci. 13(4), 251–266 (2012).
[Crossref] [PubMed]

A. Vaziri and V. Emiliani, “Reshaping the optical dimension in optogenetics,” Curr. Opin. Neurobiol. 22(1), 128–137 (2012).
[Crossref] [PubMed]

E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
[Crossref] [PubMed]

A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett. 37(23), 4841–4843 (2012).
[Crossref] [PubMed]

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

2011 (4)

L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express 19(10), 9056–9065 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

2009 (1)

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

2007 (2)

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

2004 (1)

1997 (1)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

1994 (1)

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

1979 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

1977 (2)

M. Miyagi and G. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9(1), 51–60 (1977).
[Crossref]

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step-index optical fibers,” IEEE Trans. Microw. Theory Tech. 25(7), 577–585 (1977).
[Crossref]

1975 (1)

1972 (1)

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

1969 (1)

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Adamantidis, A.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Al-Hasani, R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Allegra Mascaro, A. L.

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

Amphawan, A.

Aravanis, A. M.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Assad, J. A.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Bierbrauer, C.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Bovetti, S.

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

Boyden, E. S.

Bradley, J.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Bruchas, M. R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Buzsáki, G.

E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
[Crossref] [PubMed]

Cardin, J. A.

M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
[Crossref] [PubMed]

Carter, F. D.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

Davidson, T. J.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Dawson, M. D.

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

De Koninck, Y.

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

de Lecea, L.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

De Sars, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

De Vittorio, M.

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Deisseroth, K.

L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
[Crossref] [PubMed]

M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
[Crossref] [PubMed]

K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci. 13(4), 251–266 (2012).
[Crossref] [PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

Djordjevich, A.

Dufour, S.

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

Emiliani, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

A. Vaziri and V. Emiliani, “Reshaping the optical dimension in optogenetics,” Curr. Opin. Neurobiol. 22(1), 128–137 (2012).
[Crossref] [PubMed]

Fellin, T.

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

Fenno, L.

L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Fenno, L. E.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Foley, J. T.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

Fonstad, C. G.

Funabiki, K.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14(7), 1538–1542 (1975).
[Crossref] [PubMed]

Garito, A. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Ghovanloo, M.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Gloge, D.

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

Goßler, C.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Grosenick, L.

L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
[Crossref] [PubMed]

Gu, E.

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

Hafner, C.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Hayashi, Y.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Hoch, G.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Holc, K.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Huang, X.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Huang, Y.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Jeunhomme, L.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step-index optical fibers,” IEEE Trans. Microw. Theory Tech. 25(7), 577–585 (1977).
[Crossref]

Jiang, G.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Jung, Y. H.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Keppeler, D.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Khijwania, S. K.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

Kim, R.-H.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kim, S.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Kim, T. I.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Köhler, K.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Koos, T.

E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
[Crossref] [PubMed]

Kunzer, M.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Kwon, K. Y.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lee, H. M.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Lee, S. D.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Li, W.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Li, Y.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Lu, C.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Marshel, J. H.

L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
[Crossref] [PubMed]

Martiradonna, L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Mathieson, K.

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14(7), 1538–1542 (1975).
[Crossref] [PubMed]

McAlinden, N.

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

McCall, J. G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Meltzer, L. A.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Miyagi, M.

M. Miyagi and G. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9(1), 51–60 (1977).
[Crossref]

Mogri, M.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Moser, R.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Moser, T.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Nakanishi, S.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Neef, J.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Novotny, L.

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Oldenburg, I. A.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Omenetto, F. G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Pao, H. A.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Paul, O.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Pavone, F. S.

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

Payne, D. N.

Pisanello, F.

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Pisanello, M.

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Pletschen, W.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Rogers, J. A.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Rousseau, M.

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step-index optical fibers,” IEEE Trans. Microw. Theory Tech. 25(7), 577–585 (1977).
[Crossref]

Ruther, P.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Sabatini, B. L.

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Sacconi, L.

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

Sakata, S.

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

Savovic, S.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Schneider, M. B.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Scholvin, J.

Schwaerzle, M.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Schwarz, U. T.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Shi, R. F.

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

Shin, G.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Sileo, L.

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

Silvestri, L.

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

Singh, J. P.

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

Siuda, E. R.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

Song, I.-S.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Song, J.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Song, Y. M.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Stark, E.

E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
[Crossref] [PubMed]

Szabo, V.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Tagawa, Y.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Tan, M. P.

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Tye, K. M.

K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci. 13(4), 251–266 (2012).
[Crossref] [PubMed]

Vaziri, A.

A. Vaziri and V. Emiliani, “Reshaping the optical dimension in optogenetics,” Curr. Opin. Neurobiol. 22(1), 128–137 (2012).
[Crossref] [PubMed]

Ventalon, C.

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

Wagner, J.

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Wang, L.-P.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Warden, M. R.

M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
[Crossref] [PubMed]

Weber, A.

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

Yawata, S.

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Yip, G.

M. Miyagi and G. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9(1), 51–60 (1977).
[Crossref]

Yizhar, O.

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

Zorzos, A. N.

Annu. Rev. Biomed. Eng. (1)

M. R. Warden, J. A. Cardin, and K. Deisseroth, “Optical Neural Interfaces,” Annu. Rev. Biomed. Eng. 16(1), 103–129 (2014).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

L. Fenno, O. Yizhar, and K. Deisseroth, “The Development and Application of Optogenetics,” Annu. Rev. Neurosci. 34(1), 389–412 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Bell Syst. Tech. J. (2)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51(8), 1767–1783 (1972).
[Crossref]

Curr. Opin. Neurobiol. (1)

A. Vaziri and V. Emiliani, “Reshaping the optical dimension in optogenetics,” Curr. Opin. Neurobiol. 22(1), 128–137 (2012).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

Y. Hayashi, Y. Tagawa, S. Yawata, S. Nakanishi, and K. Funabiki, “Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy,” Eur. J. Neurosci. 36(6), 2722–2732 (2012).
[Crossref] [PubMed]

Fiber Integrated Opt. (1)

S. K. Khijwania, F. D. Carter, J. T. Foley, and J. P. Singh, “Effect of launching condition on modal power characteristics of multi-mode step-index optical fiber: a theoretical and experimental investigation,” Fiber Integrated Opt. 29(1), 62–75 (2009).
[Crossref]

Front. Neural Circuits (1)

N. McAlinden, E. Gu, M. D. Dawson, S. Sakata, and K. Mathieson, “Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe,” Front. Neural Circuits 9, 25 (2015).
[Crossref] [PubMed]

Front. Syst. Neurosci. (1)

K. Y. Kwon, H. M. Lee, M. Ghovanloo, A. Weber, and W. Li, “Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application,” Front. Syst. Neurosci. 9, 69 (2015).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

G. Jiang, R. F. Shi, and A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photonics Technol. Lett. 9(8), 1128–1130 (1997).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

M. Rousseau and L. Jeunhomme, “Numerical solution of the coupled-power equation in step-index optical fibers,” IEEE Trans. Microw. Theory Tech. 25(7), 577–585 (1977).
[Crossref]

A. W. Snyder, “Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

J. Biomed. Opt. (1)

A. L. Allegra Mascaro, L. Silvestri, L. Sacconi, and F. S. Pavone, “Towards a comprehensive understanding of brain machinery by correlative microscopy,” J. Biomed. Opt. 20(6), 061105 (2015).
[Crossref] [PubMed]

J. Neural Eng. (1)

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng. 4(3), S143–S156 (2007).
[Crossref] [PubMed]

J. Neurophysiol. (1)

E. Stark, T. Koos, and G. Buzsáki, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol. 108(1), 349–363 (2012).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, P. Ruther, O. Paul, J. Neef, D. Keppeler, G. Hoch, T. Moser, and U. T. Schwarz, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” J. Phys. D Appl. Phys. 47(20), 205401 (2014).
[Crossref]

Nat. Methods (1)

K. Deisseroth, “Optogenetics,” Nat. Methods 8(1), 26–29 (2011).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (2)

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci. 8(8), 577–581 (2007).
[Crossref] [PubMed]

K. M. Tye and K. Deisseroth, “Optogenetic investigation of neural circuits underlying brain disease in animal models,” Nat. Rev. Neurosci. 13(4), 251–266 (2012).
[Crossref] [PubMed]

Neuron (4)

V. Szabo, C. Ventalon, V. De Sars, J. Bradley, and V. Emiliani, “Spatially Selective Holographic Photoactivation and Functional Fluorescence Imaging in Freely Behaving Mice with a Fiberscope,” Neuron 84(6), 1157–1169 (2014).
[Crossref] [PubMed]

L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Optogenetic Control,” Neuron 86(1), 106–139 (2015).
[Crossref] [PubMed]

F. Pisanello, L. Sileo, I. A. Oldenburg, M. Pisanello, L. Martiradonna, J. A. Assad, B. L. Sabatini, and M. De Vittorio, “Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics,” Neuron 82(6), 1245–1254 (2014).
[Crossref] [PubMed]

O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in Neural Systems,” Neuron 71(1), 9–34 (2011).
[Crossref] [PubMed]

Neurophotonics (1)

S. Dufour and Y. De Koninck, “Optrodes for combined optogenetics and electrophysiology in live animals,” Neurophotonics 2(3), 031205 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

M. Miyagi and G. Yip, “Mode conversion and radiation losses in a step-index optical fibre due to bending,” Opt. Quantum Electron. 9(1), 51–60 (1977).
[Crossref]

W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Curvature and microbending losses in single-mode optical fibres,” Opt. Quantum Electron. 11(1), 43–59 (1979).
[Crossref]

Phys. Rev. E (1)

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E 50(5), 4094–4106 (1994).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Sileo, M. Pisanello, M. De Vittorio, and F. Pisanello, “Fabrication of multipoint light emitting optical fibers for optogenetics,” Proc. SPIE 9305, 93052O (2015).
[Crossref]

Science (1)

T. I. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, and M. R. Bruchas, “Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics,” Science 340(6129), 211–216 (2013).
[Crossref] [PubMed]

Other (7)

M. F. Bear, B. W. Conners, and M. A. Paradiso, Neuroscience. Exploring the Brain, 3rd ed. (Lippincott Williams and Wilkins, Philadelphia, 2007).

M. Pisanello, F. Pisanello, L. Sileo, and M. De Vittorio, “Photonic technologies for optogenetics,” in Transparent Optical Networks (ICTON),201416th International Conference on, 2014), 1–4.
[Crossref]

M. Schwaerzle, P. Elmlinger, O. Paul, and P. Ruther, “Miniaturized 3x3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection,” in Micro Electro Mechanical Systems (MEMS),201528th IEEE International Conference on, 2015), 162–165.

R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw Hill, New York, 1992).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Filmetrics, “Filmetrics refractive index database,” ( http://www.filmetrics.com/refractive-index-database , 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a)-(c): Schematic representation of the devices with one (a, b) and two (c) windows used for the experiments. (d), (e): Scanning electron microscope images showing in detail the optical windows milled on device W2 (d) and W1 (e). (f): Scanning electron microscope image of a typical two-window MPEF. (g): Schematic representation of a two-window MPEF implanted in the mouse primary motor cortex.
Fig. 2
Fig. 2 (a): Definitions and coordinates system at the input face of the optical fiber. (b): Three-dimensional schematic layout of the ray tracing model in which the four blocks are indicated: a straight optical fiber (1), a bent optical fiber (2), the buffer region (3) and the tapered region (4). (c) Detail of the position of the detector recording the geometrical properties of the rays outcoupled by the windows. The inset shows the rays outcoupling angles φx and φy recorded by the detector. φx is the angle between Dz and the projection of the outcoupled ray propagation direction on the plane Dz-Dx. φy is the angle between Dy and the projection of the outcoupled ray propagation direction on the plane Dz-Dy. (d) Experimental setup used to select the coupling angle between the laser beam and the input facet of the optical fiber.
Fig. 3
Fig. 3 (a): Values of kt injected into the optical fiber as estimated by the analytical model (blue curves), the ray tracing model (green squares) and by experimental measurements (red squares). The dark blue curve represents the kt value of the mode excited with the highest power, the light blue area marks the subset of modes carrying at least 5% of the maximum excited power. Green and red bars indicate the kt value at which the detected intensity decays below the 50% with respect to the detected maximum. The upper inset displays the optical setup used to obtain the Fourier transform of the fiber output endface; nominal focal lengths are fa = 100.0 mm, fb = 7.5 mm, fc = 30.0 mm. (b): Fourier transform of the fiber output endface for three different values of θ both for experiments (upper row) and ray tracing simulations (lower row). (c) Evolution of kt values inside the taper for three different values of θ. Each shaded region was computed using both Eq. (3) and the extreme points of the corresponding bar in the experimental data shown in panel (a) as kt values for a taper diameter of 125 µm. The horizontal black line represents the cutoff limit. (d) Evolution of the power confined into the taper for four different values of θ. The two vertical black lines indicate the taper diameters where optical windows are placed. Taper diameters inside the gray area (i.e. below 3 µm) were excluded from the analysis.
Fig. 4
Fig. 4 (a), (b): Power emitted from devices W1 (panel a) and W2 (panel b) as a function of θ for input power of 15 mW. (c), (d): Fluorescence images of the emission of devices W1 (panel c) and W2 (panels d) for three different values of θ, the taper being submerged in a fluorescein droplet. White lines show the taper profile. (e), (f): Outcoupling angle of the light emitted from device W1 (panel e) and W2 (panel f) as a function of θ. (g), (h): Normalized radiance maps of the light emitted from devices W1 (panels g) and W2 (panels h) obtained through the ray tracing model for three different values of θ. Definitions of φx and φy are reported in Fig. 2(c). For each map the colorbar represents a 6 decades logarithmic scale.
Fig. 5
Fig. 5 (a), (b): Power emitted from H1 (panel a) and H2 (panel b) as a function of θ for input power of 15 mW for device W1-2. (c), (d): Fluorescence images of the emission of devices W1-2 for θ = 6.2° (panel c) and for for θ = 12.3° (panel d) for three different values of θ, the taper being submerged in a fluorescein droplet. White lines show the taper profile. (e), (f): Outcoupling angle of the light emitted from H1 (panel e) and from H2 (panel f) as a function of θ. (g), (h): Normalized radiance maps of the light emitted from H1 (panels g) and from H2 (panels h) obtained through the ray tracing model for three different values of θ. Definitions of φx and φy are reported in Fig. 2(c). For each map the colorbar represents a 6 decades logarithmic scale.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k t,l,m = ζ l,m a ,
( k 0 n) 2 = ( 2π λ 0 n ) 2 = β l,m 2 + k t,l,m 2 ,
k t,l,m (1) = a (0) a (1) k t,l,m (0) .
σ l,m = Σ 1 2 [ E s,t (x,y)× h t,l,m * (x,y) ] z ^ dxdy,
[ e t,l,m (a) (r,ϕ) e t,l,m (b) (r,ϕ) e t,lm (c) (r,ϕ) e t,l,m (d) (r,ϕ) ]=[ y ^ cos(lϕ) y ^ sin(lϕ) x ^ cos(lϕ) x ^ sin(lϕ) ]{ 1 J l ( u l,m ) J l ( u l,m r r core )0r r core 1 K l ( u l,m ) K l ( w l,m r r core )r r core ,
h t,l,m (.) (r,ϕ)= z ^ × e t,l,m (.) (r,ϕ) η(r) ,
E s,t (r,ϕ,θ) 2 μ 0 π ε 0 ρ 2 T(r,ϕ,θ)exp[ r 2 2 ρ 2 ]exp[ j 2π λ 0 rsinθcosϕ ] y ^ ,
k t,l,m = ξ l,m a ( 1j τ k 0 n eq a ),
α l,m = 1 k 0 n eq ( ξ l,m a ) 2 1 a Re(τ),
β l,m ={ 1 1 ( k 0 n eq ) 2 ( ξ l,m a ) 2 [ 1 2 +Im( τ k 0 n eq a ) ] },

Metrics