Abstract

Neonatal neuromonitoring is a major clinical focus of near-infrared spectroscopy (NIRS) and there is an increasing interest in measuring cerebral blood flow (CBF) and oxidative metabolism (CMRO2) in addition to the classic tissue oxygenation saturation (StO2). The purpose of this study was to assess the ability of broadband NIRS combined with diffusion correlation spectroscopy (DCS) to measured changes in StO2, CBF and CMRO2 in preterm infants undergoing pharmaceutical treatment of patent ductus arteriosus. CBF was measured by both DCS and contrast-enhanced NIRS for comparison. No significant difference in the treatment-induced CBF decrease was found between DCS (27.9 ± 2.2%) and NIRS (26.5 ± 4.3%). A reduction in StO2 (70.5 ± 2.4% to 63.7 ± 2.9%) was measured by broadband NIRS, reflecting the increase in oxygen extraction required to maintain CMRO2. This study demonstrates the applicability of broadband NIRS combined with DCS for neuromonitoring in this patient population.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy

Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B. Morrison, Ilias Tachtsidis, Keith St. Lawrence, and Mamadou Diop
Biomed. Opt. Express 9(6) 2588-2603 (2018)

Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

Mamadou Diop, Kyle Verdecchia, Ting-Yim Lee, and Keith St Lawrence
Biomed. Opt. Express 2(7) 2068-2081 (2011)

Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound

Erin M. Buckley, Noah M. Cook, Turgut Durduran, Meeri N. Kim, Chao Zhou, Regine Choe, Guoqiang Yu, Susan Shultz, Chandra M. Sehgal, Daniel J. Licht, Peter H. Arger, Mary E. Putt, Hallam Hurt, and Arjun G. Yodh
Opt. Express 17(15) 12571-12581 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Behrman and A. S. Bulter, Preterm Birth: Causes, Consequences, and Prevention (National Academies Press, 2007).
  2. J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
    [Crossref] [PubMed]
  3. H. Bassan, “Intracranial hemorrhage in the preterm infant: understanding it, preventing it,” Clin. Perinatol. 36(4), 737–762 (2009).
    [Crossref] [PubMed]
  4. G. Greisen, “Cerebral blood flow in preterm infants during the first week of life,” Acta Paediatr. Scand. 75(1), 43–51 (1986).
    [Crossref] [PubMed]
  5. J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
    [Crossref] [PubMed]
  6. M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
    [Crossref] [PubMed]
  7. F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
    [Crossref] [PubMed]
  8. S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
    [Crossref] [PubMed]
  9. F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
    [Crossref] [PubMed]
  10. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. 369(1955), 4407–4424 (2011).
  11. K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
    [Crossref] [PubMed]
  12. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
    [Crossref] [PubMed]
  13. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
    [Crossref] [PubMed]
  14. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
    [Crossref] [PubMed]
  15. M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
    [Crossref] [PubMed]
  16. K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
    [Crossref] [PubMed]
  17. E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
    [Crossref] [PubMed]
  18. G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
    [Crossref] [PubMed]
  19. H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
    [Crossref] [PubMed]
  20. O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
    [Crossref] [PubMed]
  21. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
    [Crossref] [PubMed]
  22. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [Crossref] [PubMed]
  23. D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
    [Crossref] [PubMed]
  24. K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
    [Crossref] [PubMed]
  25. H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
    [Crossref] [PubMed]
  26. M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
    [Crossref] [PubMed]
  27. R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
    [Crossref] [PubMed]
  28. M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
    [Crossref] [PubMed]
  29. S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128 (1994).
    [Crossref]
  30. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  31. M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
    [Crossref] [PubMed]
  32. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
    [Crossref] [PubMed]
  33. L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
    [Crossref] [PubMed]
  34. J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
    [Crossref] [PubMed]
  35. C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
    [PubMed]
  36. C. W. Yoxall and A. M. Weindling, “Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age,” Pediatr. Res. 44(3), 283–290 (1998).
    [Crossref] [PubMed]
  37. C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
    [Crossref] [PubMed]
  38. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
    [Crossref] [PubMed]
  39. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
    [Crossref] [PubMed]
  40. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
    [Crossref] [PubMed]
  41. V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
    [Crossref] [PubMed]
  42. J. Kishimoto, M. Diop, P. McLachlan, S. de Ribaupierre, D. S. C. Lee, and K. St. Lawrence, “Evidence of ventricular contamination of the optical signal in preterm neonates with post hemorrhagic ventricle dilation,” in Optical Tomography and Spectroscopy of Tissue XI, B. J. Tromberg, A. G. Yodh, E. M. Sevick-Muraca, R. R. Alfano, ed. (Proc. of SPIE, 2015), p. 931908.

2014 (6)

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

G. Bale, S. Mitra, J. Meek, N. Robertson, and I. Tachtsidis, “A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury,” Biomed. Opt. Express 5(10), 3450–3466 (2014).
[Crossref] [PubMed]

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

2013 (4)

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (4)

2010 (4)

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

2009 (4)

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

H. Bassan, “Intracranial hemorrhage in the preterm infant: understanding it, preventing it,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

2008 (2)

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

2007 (1)

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

2006 (1)

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

2005 (2)

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

2004 (1)

2002 (1)

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

2001 (1)

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

2000 (2)

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

1998 (1)

C. W. Yoxall and A. M. Weindling, “Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age,” Pediatr. Res. 44(3), 283–290 (1998).
[Crossref] [PubMed]

1995 (1)

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

1994 (2)

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128 (1994).
[Crossref]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

1986 (1)

G. Greisen, “Cerebral blood flow in preterm infants during the first week of life,” Acta Paediatr. Scand. 75(1), 43–51 (1986).
[Crossref] [PubMed]

Akins, P.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Anderson, M. P.

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Arger, P. H.

Arora, R.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Austin, T.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Azzopardi, D.

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

Bale, G.

Bassan, H.

H. Bassan, “Intracranial hemorrhage in the preterm infant: understanding it, preventing it,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. 369(1955), 4407–4424 (2011).

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Brown, D. W.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Buckley, E. M.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

Burnett, M. G.

Carp, S. A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Chauchard, F.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Cheung, C.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Choe, R.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

Cook, N. M.

Cope, M.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Crocker, R.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Culver, J. P.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Dehaes, M.

Dehghani, H.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Delpy, D. T.

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Detre, J. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Diop, M.

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Disalvo, D. N.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Dong, L.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

du Plessis, A.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

du Plessis, A. J.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Durduran, T.

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Durning, S. M.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Edwards, A. D.

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

Eichenwald, E.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Eidelman, A. I.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Elliott, J.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Elliott, J. T.

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Elwell, C. E.

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Fantini, S.

Ferber, B.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Franceschini, M. A.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. 369(1955), 4407–4424 (2011).

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

S. Fantini, M. A. Franceschini, and E. Gratton, “Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11(10), 2128 (1994).
[Crossref]

Gaynor, J. W.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Glaser, J.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Grant, P. E.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Gratton, E.

Greenberg, J. H.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Greisen, G.

G. Greisen, “Cerebral blood flow in preterm infants during the first week of life,” Acta Paediatr. Scand. 75(1), 43–51 (1986).
[Crossref] [PubMed]

Hadway, J. A.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

Hamilton, P.

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

Hammer, P. E.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Hammerman, C.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

He, L.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

Henty, J. R.

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Hurt, H. H.

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Jain, V.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Jensen, F. E.

J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
[Crossref] [PubMed]

Kaplan, M.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Kim, M. N.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

Kinney, H. C.

J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
[Crossref] [PubMed]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Lavin, N. A.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Leblond, F.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Lee, D. S. C.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Lee, T. Y.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Lee, T.-Y.

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

Lemmers, P.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Leung, T. S.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Licht, D. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

Limperopoulos, C.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Lin, Y.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

Lynch, J. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Mason, S. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Matcher, S. J.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

McCoy, M.

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Meek, J.

Meek, J. H.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Mitra, S.

Montenegro, L. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Moore, M.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Naeini, J. G.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Naim, M. Y.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Naulaers, G.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Nicolson, S. C.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Noori, S.

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

Parthasarathy, A. B.

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

Patel, J.

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

Patel, M.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Picot, P. A.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

Pienaar, R.

Pogue, B. W.

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

Pucci, O.

Putt, M. E.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

Ramji, F.

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Ridha, M.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Ringer, S.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Roberts, I.

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

Robertson, N.

Roche-Labarbe, N.

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult,” Biomed. Opt. Express 2(3), 552–567 (2011).
[Crossref] [PubMed]

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Rosenberg, H. C.

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

Rosenberg, P. A.

J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
[Crossref] [PubMed]

Rylett, R. J.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

Saul, J. P.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Schimmel, M. S.

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Schultz, S.

Schwab, P. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Sehgal, C. M.

Selb, J.

Seri, I.

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Shang, Y.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

Sliva, D. D.

Sobh, J.

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Soul, J. S.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Spray, T. L.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Springett, R.

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

St Lawrence, K.

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

M. Diop and K. St Lawrence, “Deconvolution method for recovering the photon time-of-flight distribution from time-resolved measurements,” Opt. Lett. 37(12), 2358–2360 (2012).
[Crossref] [PubMed]

H. Z. Yeganeh, V. Toronov, J. T. Elliott, M. Diop, T.-Y. Lee, and K. St Lawrence, “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

O. Pucci, V. Toronov, and K. St Lawrence, “Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy,” Appl. Opt. 49(32), 6324–6332 (2010).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

Surova, A.

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

Tachtsidis, I.

Takahashi, K.

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Tichauer, K. M.

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

Toronov, V.

Trachtenberg, F.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Tsuji, M.

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

van Bel, F.

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Verdecchia, K.

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

M. Diop, K. Verdecchia, T.-Y. Lee, and K. St Lawrence, “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).
[Crossref] [PubMed]

Volpe, J. J.

J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
[Crossref] [PubMed]

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

Walker, A. M.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

Wang, J.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Wehrli, F. W.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Weindling, A. M.

C. W. Yoxall and A. M. Weindling, “Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age,” Pediatr. Res. 44(3), 283–290 (1998).
[Crossref] [PubMed]

Wilkinson, M.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

Wong, D. Y. L.

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

Wong, F. Y.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

Wright, E.

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

Wyatt, J. S.

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Yeganeh, H. Z.

Yodh, A. G.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Yoxall, C. W.

C. W. Yoxall and A. M. Weindling, “Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age,” Pediatr. Res. 44(3), 283–290 (1998).
[Crossref] [PubMed]

Yu, G.

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009).
[Crossref] [PubMed]

T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004).
[Crossref] [PubMed]

Zhou, C.

Zimmerman, R. A.

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

Acta Paediatr. Scand. (1)

G. Greisen, “Cerebral blood flow in preterm infants during the first week of life,” Acta Paediatr. Scand. 75(1), 43–51 (1986).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (1)

C. E. Elwell, J. R. Henty, T. S. Leung, T. Austin, J. H. Meek, D. T. Delpy, and J. S. Wyatt, “Measurement of CMRO2 in neonates undergoing intensive care using near infrared spectroscopy,” Adv. Exp. Med. Biol. 566, 263–268 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (4)

Clin. Perinatol. (1)

H. Bassan, “Intracranial hemorrhage in the preterm infant: understanding it, preventing it,” Clin. Perinatol. 36(4), 737–762 (2009).
[Crossref] [PubMed]

Hum. Brain Mapp. (1)

N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

L. Dong, L. He, Y. Lin, Y. Shang, and G. Yu, “Simultaneously extracting multiple parameters via fitting one single autocorrelation function curve in diffuse correlation spectroscopy,” IEEE Trans. Biomed. Eng. 60(2), 361–368 (2013).
[Crossref] [PubMed]

Int. J. Dev. Neurosci. (1)

J. J. Volpe, H. C. Kinney, F. E. Jensen, and P. A. Rosenberg, “The developing oligodendrocyte: key cellular target in brain injury in the premature infant,” Int. J. Dev. Neurosci. 29(4), 423–440 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

K. Verdecchia, M. Diop, T.-Y. Lee, and K. St Lawrence, “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).
[Crossref] [PubMed]

M. Diop, E. Wright, V. Toronov, T.-Y. Lee, and K. St Lawrence, “Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer,” J. Biomed. Opt. 19(5), 057007 (2014).
[Crossref] [PubMed]

T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

K. M. Tichauer, J. A. Hadway, T.-Y. Lee, and K. St Lawrence, “Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study,” J. Cereb. Blood Flow Metab. 26(5), 722–730 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Pediatr. (1)

S. Noori, M. McCoy, M. P. Anderson, F. Ramji, and I. Seri, “Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants,” J. Pediatr. 164(2), 264–270 (2014).
[Crossref] [PubMed]

Neonatology (1)

F. van Bel, P. Lemmers, and G. Naulaers, “Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls,” Neonatology 94(4), 237–244 (2008).
[Crossref] [PubMed]

Neuroimage (1)

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

Neurophotonics (1)

E. M. Buckley, A. B. Parthasarathy, P. E. Grant, A. G. Yodh, and M. A. Franceschini, “Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects,” Neurophotonics 1(1), 011009 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Pediatr. Res. (7)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy,” Pediatr. Res. 58(3), 568–573 (2005).
[Crossref] [PubMed]

C. W. Yoxall and A. M. Weindling, “Measurement of cerebral oxygen consumption in the human neonate using near infrared spectroscopy: cerebral oxygen consumption increases with advancing gestational age,” Pediatr. Res. 44(3), 283–290 (1998).
[Crossref] [PubMed]

J. Patel, I. Roberts, D. Azzopardi, P. Hamilton, and A. D. Edwards, “Randomized double-blind controlled trial comparing the effects of ibuprofen with indomethacin on cerebral hemodynamics in preterm infants with patent ductus arteriosus,” Pediatr. Res. 47(1), 36–42 (2000).
[Crossref] [PubMed]

R. Arora, M. Ridha, D. S. C. Lee, J. Elliott, H. C. Rosenberg, M. Diop, T.-Y. Lee, and K. St Lawrence, “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).
[Crossref] [PubMed]

D. W. Brown, P. A. Picot, J. G. Naeini, R. Springett, D. T. Delpy, and T. Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).
[Crossref] [PubMed]

K. M. Tichauer, D. Y. L. Wong, J. A. Hadway, R. J. Rylett, T.-Y. Lee, and K. St Lawrence, “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).
[Crossref] [PubMed]

J. S. Soul, P. E. Hammer, M. Tsuji, J. P. Saul, H. Bassan, C. Limperopoulos, D. N. Disalvo, M. Moore, P. Akins, S. Ringer, J. J. Volpe, F. Trachtenberg, and A. J. du Plessis, “Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants,” Pediatr. Res. 61(4), 467–473 (2007).
[Crossref] [PubMed]

Pediatrics (3)

M. Tsuji, J. P. Saul, A. du Plessis, E. Eichenwald, J. Sobh, R. Crocker, and J. J. Volpe, “Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants,” Pediatrics 106(4), 625–632 (2000).
[Crossref] [PubMed]

F. Y. Wong, T. S. Leung, T. Austin, M. Wilkinson, J. H. Meek, J. S. Wyatt, and A. M. Walker, “Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy,” Pediatrics 121(3), e604–e611 (2008).
[Crossref] [PubMed]

C. Hammerman, J. Glaser, M. S. Schimmel, B. Ferber, M. Kaplan, and A. I. Eidelman, “Continuous versus multiple rapid infusions of indomethacin: effects on cerebral blood flow velocity,” Pediatrics 95(2), 244–248 (1995).
[PubMed]

Philos. Trans. A. (1)

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A. 369(1955), 4407–4424 (2011).

Phys. Med. Biol. (4)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

H. Dehghani, F. Leblond, B. W. Pogue, and F. Chauchard, “Application of spectral derivative data in visible and near-infrared spectroscopy,” Phys. Med. Biol. 55(12), 3381–3399 (2010).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. Diop, J. T. Elliott, K. M. Tichauer, T.-Y. Lee, and K. St Lawrence, “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).
[Crossref] [PubMed]

Other (2)

J. Kishimoto, M. Diop, P. McLachlan, S. de Ribaupierre, D. S. C. Lee, and K. St. Lawrence, “Evidence of ventricular contamination of the optical signal in preterm neonates with post hemorrhagic ventricle dilation,” in Optical Tomography and Spectroscopy of Tissue XI, B. J. Tromberg, A. G. Yodh, E. M. Sevick-Muraca, R. R. Alfano, ed. (Proc. of SPIE, 2015), p. 931908.

R. E. Behrman and A. S. Bulter, Preterm Birth: Causes, Consequences, and Prevention (National Academies Press, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (left) Brain ICG concentration curves measured by DCE NIRS before (blue) and after (red) indomethacin infusion and (right) corresponding DCS intensity autocorrelation curves measured pre (blue symbols) and post (red symbols) infusion. The solid lines in the DCS graphs represent the best fit of the diffusion equation with flow modeled as pseudo-Brownian motion.
Fig. 2
Fig. 2 Time course of CBF from one infant during indomethacin infusion. Intensity autocorrelation curves were acquired continuously with a temporal resolution of 30 s. Their corresponding BFi values have been scaled to the baseline CBF value measured by DCE NIRS.
Fig. 3
Fig. 3 Correlation between the treatment-induced change in BFi measured by DCS and the corresponding CBF change measured DCE NIRS (N = 8). Each symbol represents data from one of eight infants, the solid line is the best linear fit, and the blue lines are the 95% confidence intervals.
Fig. 4
Fig. 4 First (a) and second (b) spectral derivatives of reflectance spectra acquired before (red) and after (blue) indomethacin infusion. Spectra were de-noised and averaged over a 10-s interval.
Fig. 5
Fig. 5 Average absorption spectrum (top) and the corresponding 1st and 2nd derivative spectra (bottom) (N = 13). In each graph, the mean value is represented by the red line and the standard deviation by the error bars.

Tables (2)

Tables Icon

Table 1 Clinical Parameters

Tables Icon

Table 2 NIRS parameters before and after indomethacin infusion (N = 13)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C b ( t ) = C B T R ( t ) * C a ( t )
C M R O 2 = C B F K f v [ t H b ] ( S a O 2 S t O 2 )
μ s ' = A ( λ 800 ) a
μ a ( λ ) = [ H b O 2 ] ε H b O 2 ( λ ) + [ H b ] ε H b ( λ ) + W F ε H 2 O ( λ )

Metrics