Abstract

The biological investigation and detection of esophageal cancers could be facilitated with an endoscopic technology to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and investigation through the sensitive and multiplexed detection of cell-surface biomarkers. Here, we demonstrate that the topical application and endoscopic imaging of a multiplexed cocktail of receptor-targeted SERS NPs enables the rapid detection of tumors in an orthotopic rat model of esophageal cancer. Antibody-conjugated SERS NPs were topically applied on the lumenal surface of the rat esophagus to target EGFR and HER2, and a miniature spectral endoscope featuring rotational scanning and axial pull-back was employed to comprehensively image the NPs bound on the lumen of the esophagus. Ratiometric analyses of specific vs. nonspecific binding enabled the visualization of tumor locations and the quantification of biomarker expression in agreement with immunohistochemistry and flow cytometry validation data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus

Yu W. Wang, Altaz Khan, Steven Y. Leigh, Danni Wang, Ye Chen, Daphne Meza, and Jonathan T.C. Liu
Biomed. Opt. Express 5(9) 2883-2895 (2014)

Intravital imaging of mouse colonic adenoma using MMP-based molecular probes with multi-channel fluorescence endoscopy

Gyungseok Oh, Su Woong Yoo, Yebin Jung, Yeon-Mi Ryu, Youngrong Park, Sang-Yeob Kim, Ki Hean Kim, Sungjee Kim, Seung-Jae Myung, and Euiheon Chung
Biomed. Opt. Express 5(5) 1677-1689 (2014)

Clinically compatible flexible wide-field multi-color fluorescence endoscopy with a porcine colon model

Gyugnseok Oh, Youngrong Park, Su Woong Yoo, Soonjoo Hwang, Alexey V. Dan Chin-Yu, Yeon-Mi Ryu, Sang-Yeob Kim, Eun-Ju Do, Ki Hean Kim, Sungjee Kim, Seung-Jae Myung, and Euiheon Chung
Biomed. Opt. Express 8(2) 764-775 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
    [Crossref] [PubMed]
  2. R. F. Souza, “Molecular and biologic basis of upper gastrointestinal malignancy--esophageal carcinoma,” Surg. Oncol. Clin. N. Am. 11(2), 257–272 (2002).
    [Crossref] [PubMed]
  3. J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician 73(12), 2187–2194 (2006).
    [PubMed]
  4. A. P. Polednak, “Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas,” Int. J. Cancer 105(1), 98–100 (2003).
    [Crossref] [PubMed]
  5. M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
    [Crossref] [PubMed]
  6. M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
    [Crossref] [PubMed]
  7. E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
    [Crossref] [PubMed]
  8. T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
    [PubMed]
  9. R. Weissleder, B. D. Ross, A. Rehemtulla, and S. S. Gambhir, Molecular Imaging: Principles and Practice (People's Medical Publishing House, 2010).
  10. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
    [Crossref] [PubMed]
  11. Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
    [Crossref] [PubMed]
  12. Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
    [Crossref] [PubMed]
  13. C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
    [Crossref] [PubMed]
  14. C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
    [Crossref] [PubMed]
  15. S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
    [Crossref] [PubMed]
  16. P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
    [Crossref] [PubMed]
  17. E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
    [Crossref] [PubMed]
  18. R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
    [Crossref] [PubMed]
  19. J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
    [Crossref] [PubMed]
  20. X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
    [Crossref] [PubMed]
  21. S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
    [Crossref] [PubMed]
  22. L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
    [Crossref] [PubMed]
  23. X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
    [Crossref] [PubMed]
  24. Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
    [Crossref] [PubMed]
  25. A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
    [Crossref] [PubMed]
  26. C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
    [Crossref] [PubMed]
  27. Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
    [Crossref] [PubMed]
  28. K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
    [Crossref] [PubMed]
  29. J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
    [Crossref] [PubMed]
  30. K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
    [Crossref] [PubMed]
  31. W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
    [Crossref]
  32. M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
    [PubMed]
  33. N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
    [Crossref] [PubMed]
  34. M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
    [Crossref] [PubMed]
  35. W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
    [Crossref] [PubMed]
  36. B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
    [Crossref] [PubMed]
  37. A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
    [PubMed]
  38. S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
    [Crossref] [PubMed]
  39. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
    [Crossref] [PubMed]
  40. S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
    [Crossref] [PubMed]
  41. E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
    [Crossref] [PubMed]

2015 (1)

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

2014 (2)

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

2013 (8)

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
[Crossref] [PubMed]

S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
[Crossref] [PubMed]

2012 (6)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

2011 (5)

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

2009 (2)

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

2008 (1)

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

2007 (2)

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

2006 (3)

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician 73(12), 2187–2194 (2006).
[PubMed]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

2005 (1)

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

2003 (3)

A. P. Polednak, “Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas,” Int. J. Cancer 105(1), 98–100 (2003).
[Crossref] [PubMed]

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

2002 (2)

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

R. F. Souza, “Molecular and biologic basis of upper gastrointestinal malignancy--esophageal carcinoma,” Surg. Oncol. Clin. N. Am. 11(2), 257–272 (2002).
[Crossref] [PubMed]

2001 (2)

D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
[Crossref] [PubMed]

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

1996 (1)

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

1995 (1)

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Ambrad, A. A.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Appelman, H. D.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Averbuch, S. D.

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

Azria, D.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Bascoul-Mollevi, C.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Basso, A.

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

Bazin, H.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Beer, D. G.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Beerli, R.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Beitler, J. J.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Berlin, A. A.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Bird-Lieberman, E. L.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Bohndiek, S. E.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

Bray, F. I.

D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
[Crossref] [PubMed]

Brindle, K. M.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Cao, M.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Carey, S.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Chan, S.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Chan, W. C. W.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Chang, S.-I.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Chardès, T.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Chen, L.

Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
[Crossref] [PubMed]

Chen, Y.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Chen, Z. G.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Cheng, Z.

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Chithrani, B. D.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Chmura, A. J.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Chon, H.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Choo, J.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Chu, P.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Chun, S. J.

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

Contag, C. H.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Cox, N. R.

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

Crapez, E.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Crawford, J. M.

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Davis, G.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

de la Zerda, A.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Dentinger, C.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Devesa, S. S.

D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
[Crossref] [PubMed]

Doering, W.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

Doering, W. E.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Elmunzer, B. J.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Eng, W. S.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Ertan, A.

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

Falsey, R.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Felt, S. A.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

Fitzgerald, R. C.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Freeman, R. G.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Friedland, S.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

Gaborit, N.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Gambhir, S. S.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Garai, E.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

Ghazani, A. A.

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Gheysens, O.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Glanzberg, H.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Globa, L. P.

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

Groner, B.

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Gunn, J. R.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Habib, A. A.

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

Hartman, K. B.

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Hasan, T.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Hekele, A.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Hellebust, A.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Hellmann, P.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Helms, M. W.

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Henson, D. E.

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

Hextrum, S. K.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Hynes, N. E.

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

James, M. L.

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Jokerst, J. V.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

Joshi, B. P.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Kempen, P.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Keren, S.

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Khan, A.

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Khondee, S.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Khuri, F. R.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Kino, G. S.

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Kislin, K.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Klubben, W. S.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Knudsen, B.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Koo, T. W.

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Kornilova, E. S.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Kwon, R. S.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Lao-Sirieix, P.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Larbouret, C.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Layke, J. C.

J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician 73(12), 2187–2194 (2006).
[PubMed]

Lee, E. K.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Lee, S.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Leigh, S. Y.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
[Crossref] [PubMed]

Lewis, M. M.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Lim, D. W.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Lin, F. I.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Liu, J. T. C.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
[Crossref] [PubMed]

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Loewke, N. O.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

Lopez, P. P.

J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician 73(12), 2187–2194 (2006).
[PubMed]

Lovat, L. B.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Lu, S.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Lu, Y.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Luong, R.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Lutz, B.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Mahal, L. K.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Mallia, R. J.

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

Mandella, M. J.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Marte, B. M.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Martinez, J. D.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Massoud, T. F.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Mathis, G.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

McVeigh, P. Z.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

Mendelsohn, J.

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Meuillet, E. J.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Meza, D.

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Miao, Z.

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Miller, C. C.

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

Moasser, M. M.

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

Morrison, N. E.

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

Natan, M. J.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Neel, B. G.

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

Neves, A. A.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Nguyen, L.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Nguyen, Q. T.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Nie, S.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Nielsen, C. H.

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Novelli, M.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

O’Donovan, M.

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Parkin, D. M.

D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
[Crossref] [PubMed]

Patel, J.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Paulmurugan, R.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Pèlegrin, A.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Peyrusson, F.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Piotti, M. E.

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Piraka, C.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Pogue, B. W.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

Polednak, A. P.

A. P. Polednak, “Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas,” Int. J. Cancer 105(1), 98–100 (2003).
[Crossref] [PubMed]

Poul, M.-A.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Qian, X.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Qin, H.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Richards-Kortum, R.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Rogalla, S.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

Rosen, N.

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

Samkoe, K. S.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Samoylova, T. I.

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

Schmidt, M.

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Sensarn, S.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

Sexton, K. J.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

Shin, D. M.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Shin, H. J. C.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Shojaei, B.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

Sinclair, R.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Smith, B. R.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

Som, M.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
[Crossref] [PubMed]

Souza, R. F.

R. F. Souza, “Molecular and biologic basis of upper gastrointestinal malignancy--esophageal carcinoma,” Surg. Oncol. Clin. N. Am. 11(2), 257–272 (2002).
[Crossref] [PubMed]

Stea, B.

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Sturm, M. B.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Su, X.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Sun, L.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Sundararajan, N.

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Sung, K.-B.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Thakor, A. S.

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

Tichauer, K. M.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Tsien, R. Y.

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

Turgeon, D. K.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Vallaghe, J.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

Van Dam, J.

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

Van de Sompel, D.

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

Vartanian, T.

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

Veilleux, I.

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

Wagadarikar, A.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

Walton, I.

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

Wang, D.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Wang, T. D.

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

Wang, X.

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
[Crossref] [PubMed]

Wang, Y. W.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Y. W. Wang, A. Khan, S. Y. Leigh, D. Wang, Y. Chen, D. Meza, and J. T. C. Liu, “Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus,” Biomed. Opt. Express 5(9), 2883–2895 (2014).
[Crossref] [PubMed]

Wels, W.

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

Wilson, B. C.

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

Yamakawa, M.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Yan, B.

Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
[Crossref] [PubMed]

Yang, H. H.

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Yazdanfar, S.

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

Yoon, S.-Y.

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Younes, M.

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

Zavaleta, C.

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

Zavaleta, C. L.

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

Zhang, J.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

Zhu, J.

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

Adv. Mater. (1)

W. E. Doering, M. E. Piotti, M. J. Natan, and R. G. Freeman, “SERS as a Foundation for Nanoscale, Optically Detected Biological Labels,” Adv. Mater. 19(20), 3100–3108 (2007).
[Crossref]

Am. Fam. Physician (1)

J. C. Layke and P. P. Lopez, “Esophageal cancer: a review and update,” Am. Fam. Physician 73(12), 2187–2194 (2006).
[PubMed]

Anticancer. Agents Med. Chem. (1)

T. I. Samoylova, N. E. Morrison, L. P. Globa, and N. R. Cox, “Peptide phage display: opportunities for development of personalized anti-cancer strategies,” Anticancer. Agents Med. Chem. 6(1), 9–17 (2006).
[PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

J. T. C. Liu, M. W. Helms, M. J. Mandella, J. M. Crawford, G. S. Kino, and C. H. Contag, “Quantifying Cell-Surface Biomarker Expression in Thick Tissues with Ratiometric Three-Dimensional Microscopy,” Biophys. J. 96(6), 2405–2414 (2009).
[Crossref] [PubMed]

Cancer Lett. (1)

B. Stea, R. Falsey, K. Kislin, J. Patel, H. Glanzberg, S. Carey, A. A. Ambrad, E. J. Meuillet, and J. D. Martinez, “Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘Iressa’),” Cancer Lett. 202(1), 43–51 (2003).
[Crossref] [PubMed]

Cancer Res. (2)

M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen, “The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells,” Cancer Res. 61(19), 7184–7188 (2001).
[PubMed]

X. Wang, X. Qian, J. J. Beitler, Z. G. Chen, F. R. Khuri, M. M. Lewis, H. J. C. Shin, S. Nie, and D. M. Shin, “Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles,” Cancer Res. 71(5), 1526–1532 (2011).
[Crossref] [PubMed]

Chem. Rev. (1)

Y. Wang, B. Yan, and L. Chen, “SERS Tags: Novel Optical Nanoprobes for Bioanalysis,” Chem. Rev. 113(3), 1391–1428 (2013).
[Crossref] [PubMed]

Eur. J. Cancer (1)

D. M. Parkin, F. I. Bray, and S. S. Devesa, “Cancer burden in the year 2000. The global picture,” Eur. J. Cancer 37(Suppl 8), S4–S66 (2001).
[Crossref] [PubMed]

Int. J. Cancer (3)

A. P. Polednak, “Trends in survival for both histologic types of esophageal cancer in US surveillance, epidemiology and end results areas,” Int. J. Cancer 105(1), 98–100 (2003).
[Crossref] [PubMed]

M. Schmidt, N. E. Hynes, B. Groner, and W. Wels, “A bivalent single-chain antibody-toxin specific for ErbB-2 and the EGF receptor,” Int. J. Cancer 65(4), 538–546 (1996).
[Crossref] [PubMed]

W. Wels, R. Beerli, P. Hellmann, M. Schmidt, B. M. Marte, E. S. Kornilova, A. Hekele, J. Mendelsohn, B. Groner, and N. E. Hynes, “EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins,” Int. J. Cancer 60(1), 137–144 (1995).
[Crossref] [PubMed]

J. Biol. Chem. (1)

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, J. R. Gunn, T. Hasan, and B. W. Pogue, “Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging,” J. Biomed. Opt. 17(6), 066001 (2012).
[Crossref] [PubMed]

P. Z. McVeigh, R. J. Mallia, I. Veilleux, and B. C. Wilson, “Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 18(4), 046011 (2013).
[Crossref] [PubMed]

E. Garai, S. Sensarn, C. L. Zavaleta, D. Van de Sompel, N. O. Loewke, M. J. Mandella, S. S. Gambhir, and C. H. Contag, “High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device,” J. Biomed. Opt. 18(9), 096008 (2013).
[Crossref] [PubMed]

R. J. Mallia, P. Z. McVeigh, I. Veilleux, and B. C. Wilson, “Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo,” J. Biomed. Opt. 17(7), 0760171 (2012).
[Crossref] [PubMed]

Mol. Cancer Res. (1)

A. A. Habib, S. J. Chun, B. G. Neel, and T. Vartanian, “Increased Expression of Epidermal Growth Factor Receptor Induces Sequestration of Extracellular Signal-Related Kinases and Selective Attenuation of Specific Epidermal Growth Factor-Mediated Signal Transduction Pathways,” Mol. Cancer Res. 1(3), 219–233 (2003).
[PubMed]

Mol. Imaging Biol. (1)

K. M. Tichauer, K. S. Samkoe, K. J. Sexton, S. K. Hextrum, H. H. Yang, W. S. Klubben, J. R. Gunn, T. Hasan, and B. W. Pogue, “In vivo quantification of tumor receptor binding potential with dual-reporter molecular imaging,” Mol. Imaging Biol. 14(5), 584–592 (2012).
[Crossref] [PubMed]

Nano Lett. (3)

L. Sun, K.-B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu, A. J. Chmura, J. Zhu, X. Su, A. A. Berlin, S. Chan, and B. Knudsen, “Composite organic-inorganic nanoparticles as Raman labels for tissue analysis,” Nano Lett. 7(2), 351–356 (2007).
[Crossref] [PubMed]

X. Su, J. Zhang, L. Sun, T. W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, and A. A. Berlin, “Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures,” Nano Lett. 5(1), 49–54 (2005).
[Crossref] [PubMed]

B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells,” Nano Lett. 6(4), 662–668 (2006).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond.) 7(3), 429–445 (2012).
[Crossref] [PubMed]

Nanoscale (1)

S. Lee, H. Chon, S.-Y. Yoon, E. K. Lee, S.-I. Chang, D. W. Lim, and J. Choo, “Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging,” Nanoscale 4(1), 124–129 (2012).
[Crossref] [PubMed]

Nat. Med. (1)

E. L. Bird-Lieberman, A. A. Neves, P. Lao-Sirieix, M. O’Donovan, M. Novelli, L. B. Lovat, W. S. Eng, L. K. Mahal, K. M. Brindle, and R. C. Fitzgerald, “Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus,” Nat. Med. 18(2), 315–321 (2012).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

Q. T. Nguyen and R. Y. Tsien, “Fluorescence-guided surgery with live molecular navigation--a new cutting edge,” Nat. Rev. Cancer 13(9), 653–662 (2013).
[Crossref] [PubMed]

PLoS One (2)

E. Garai, S. Sensarn, C. L. Zavaleta, N. O. Loewke, S. Rogalla, M. J. Mandella, S. A. Felt, S. Friedland, J. T. C. Liu, S. S. Gambhir, and C. H. Contag, “A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles,” PLoS One 10(4), e0123185 (2015).
[Crossref] [PubMed]

S. Y. Leigh, M. Som, and J. T. C. Liu, “Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles,” PLoS One 8(4), e62084 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (4)

S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, and S. S. Gambhir, “Noninvasive molecular imaging of small living subjects using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 105(15), 5844–5849 (2008).
[Crossref] [PubMed]

C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, “Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(32), 13511–13516 (2009).
[Crossref] [PubMed]

C. L. Zavaleta, E. Garai, J. T. C. Liu, S. Sensarn, M. J. Mandella, D. Van de Sompel, S. Friedland, J. Van Dam, C. H. Contag, and S. S. Gambhir, “A Raman-based endoscopic strategy for multiplexed molecular imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(25), E2288–E2297 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, A. Wagadarikar, C. L. Zavaleta, D. Van de Sompel, E. Garai, J. V. Jokerst, S. Yazdanfar, and S. S. Gambhir, “A small animal Raman instrument for rapid, wide-area, spectroscopic imaging,” Proc. Natl. Acad. Sci. U.S.A. 110(30), 12408–12413 (2013).
[Crossref] [PubMed]

Scand. J. Gastroenterol. (1)

M. Younes, D. E. Henson, A. Ertan, and C. C. Miller, “Incidence and survival trends of esophageal carcinoma in the United States: racial and gender differences by histological type,” Scand. J. Gastroenterol. 37(12), 1359–1365 (2002).
[Crossref] [PubMed]

Sci. Transl. Med. (2)

M. B. Sturm, B. P. Joshi, S. Lu, C. Piraka, S. Khondee, B. J. Elmunzer, R. S. Kwon, D. G. Beer, H. D. Appelman, D. K. Turgeon, and T. D. Wang, “Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results,” Sci. Transl. Med. 5(184), 184ra61 (2013).
[Crossref] [PubMed]

A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, and S. S. Gambhir, “The fate and toxicity of Raman-active silica-gold nanoparticles in mice,” Sci. Transl. Med. 3(79), 79ra33 (2011).
[Crossref] [PubMed]

Small (2)

C. L. Zavaleta, K. B. Hartman, Z. Miao, M. L. James, P. Kempen, A. S. Thakor, C. H. Nielsen, R. Sinclair, Z. Cheng, and S. S. Gambhir, “Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging,” Small 7(15), 2232–2240 (2011).
[Crossref] [PubMed]

J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, and S. S. Gambhir, “Affibody-Functionalized Gold-Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor,” Small 7(5), 625–633 (2011).
[Crossref] [PubMed]

Surg. Oncol. Clin. N. Am. (1)

R. F. Souza, “Molecular and biologic basis of upper gastrointestinal malignancy--esophageal carcinoma,” Surg. Oncol. Clin. N. Am. 11(2), 257–272 (2002).
[Crossref] [PubMed]

Technology (Singap World Sci) (1)

Y. W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S. Y. Leigh, D. Meza, P. Z. McVeigh, B. C. Wilson, and J. T. C. Liu, “Rapid ratiometric biomarker detection with topically applied SERS nanoparticles,” Technology (Singap World Sci) 2(2), 118–132 (2014).
[Crossref] [PubMed]

Other (1)

R. Weissleder, B. D. Ross, A. Rehemtulla, and S. S. Gambhir, Molecular Imaging: Principles and Practice (People's Medical Publishing House, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Flow cytometry validation of conjugated NPs with various biomarker-positive cell lines. EGFR-NPs, HER2-NPs and isotype-NPs were individually used to stain (a) 3T3, (b) SkBr3, (c) U251 or (d) A431 cell lines. The colored numbers represent the ratio of the mean fluorescence intensity (MFI) between a targeted NP (EGRF-NP or HER2-NP) vs. an untargeted NP (isotype-NP).
Fig. 2
Fig. 2 Schematic of the development and endoscopic imaging of a rat esophageal tumor model. (a) and (b) show the construction of an orthotopic esophageal tumor model by surgically attaching a tumor xenograft that was previously implanted subcutaneously in the flank of a nude mouse. (c) Topical application of multiplexed SERS NPs on the lumenal surface of the esophagus for ratiometric biomarker detection. (d) Endoscopic imaging of the SERS NPs via rotational pull-back of a fiber-bundle-based imaging probe.
Fig. 3
Fig. 3 Ex vivo imaging of the modified rat esophagus. (a) Photograph of the Raman endoscope. The numbered components are: 1. a stepper motor for rotational scanning; 2. a linear translation stage for axial scanning; 3. a holder for the glass tube; 4. the glass guide tube; 5. the rat esophagus; 6. the imaging probe. (b) Photograph of the esophageal cancer model with three different tumor xenografts. An image showing (c) the measured concentration of EGFR-NPs (in pM), which is ambiguous due to uneven delivery and nonspecific retention. These confounding effects are mitigated by imaging (d) the concentration ratio of EGFR-NPs vs. isotype-NPs. (e) Validation data: IHC for EGFR. The unlabeled scale bars in the bottom row of images represent 100 μm.
Fig. 4
Fig. 4 In vivo endoscopic molecular imaging performed with multiplexed SERS NPs delivered via oral gavage. (a) Photograph of a surgically exposed rat esophagus implanted with three tumor xenografts. (b) Reference spectrum of the SERS NPs that were mixed together and topically applied into the rat esophagus in this study. (c) Background spectrum of esophagus tissues and raw (mixed) spectra acquired from NP-stained normal esophagus tissues and A431 tumor implants. (d and e) Images showing the concentration ratio of (d) EGFR-NPs vs. isotype-NPs and (e) HER2-NPs vs. isotype-NPs. The right-side plots show the correlation between the image-derived intensities from various tissue types (normal esophagus and three tumors) and the corresponding fluorescence ratio (targeted-NP vs. isotype-NP) from flow-cytometry experiments with the cell lines used to generate the various tumor xenografts (Fig. 1). All values in the figures are presented as mean ± standard deviation. R > 0.95.

Metrics