Abstract

Light scattering in biological tissue significantly limits the accessible depth for localized optical interrogation and deep-tissue optical imaging. This challenge can be overcome by exploiting the time-reversal property of optical phase conjugation (OPC) to reverse multiple scattering events or suppress turbidity. However, in living tissue, scatterers are highly movable and the movement can disrupt time-reversal symmetry when there is a latency in the OPC playback. In this paper, we show that the motion-induced degradation of the OPC turbidity-suppression effect through a dynamic scattering medium shares the same decorrelation time constant as that determined from speckle intensity autocorrelation – a popular conventional measure of scatterer movement. We investigated this decorrelation characteristic time through a 1.5-mm-thick dorsal skin flap of a living mouse and found that it ranges from 50 ms to 2.5 s depending on the level of immobilization. This study provides information on relevant time scales for applying OPC to living tissues.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing through dynamic tissue with millisecond digital optical phase conjugation

Daifa Wang, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang
Optica 2(8) 728-735 (2015)

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Yan Liu, Cheng Ma, Yuecheng Shen, Junhui Shi, and Lihong V. Wang
Optica 4(2) 280-288 (2017)

An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear

Meng Cui, Emily J. McDowell, and Changhuei Yang
Opt. Express 18(1) 25-30 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
    [Crossref]
  2. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  3. E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
    [Crossref] [PubMed]
  4. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  5. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
    [Crossref] [PubMed]
  6. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
    [Crossref] [PubMed]
  7. H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
    [Crossref] [PubMed]
  8. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
    [Crossref] [PubMed]
  9. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
    [Crossref] [PubMed]
  10. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
    [Crossref] [PubMed]
  11. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
    [Crossref] [PubMed]
  12. I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” in Proceedings of SPIE, J. A. Izatt, J. G. Fujimoto, and V. V. Tuchin, eds. (2010), Vol. 7554, p. 755430.
    [Crossref]
  13. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  14. M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
    [Crossref] [PubMed]
  15. V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
    [Crossref]
  16. P. Lemieux and D. Durian, “Investigating non-Gaussian scattering processes by using n th-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
    [Crossref]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [Crossref] [PubMed]
  18. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
    [Crossref] [PubMed]
  19. R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
    [Crossref] [PubMed]
  20. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  21. J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
    [Crossref] [PubMed]
  22. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [Crossref] [PubMed]
  23. A. Ewald, Z. Werb, and M. Egeblad, “Monitoring of vital signs for long-term survival of mice under anesthesia,” Cold Spring Harb. Protoc. 2011, (2011).
  24. T. Laforest and A. Dupret, “A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation,” New Circuits Syst. Conf. IEEE 11th Int. 1–4 (2013).

2014 (2)

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

2013 (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (3)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

2011 (1)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

2010 (4)

2008 (2)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
[Crossref] [PubMed]

2002 (1)

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
[Crossref]

2000 (2)

1999 (1)

1995 (1)

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

1978 (1)

A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

Campagnola, P.

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
[Crossref] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Cuche, E.

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

Depeursinge, C.

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Durian, D.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Grange, R.

Hagaman, J. R.

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Hodgin, J. B.

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

Hsieh, C. L.

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Jang, M.

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

Judkewitz, B.

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Krege, J. H.

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

Lemieux, P.

Lequeux, F.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
[Crossref]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Marquet, P.

McDowell, E. J.

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

Pine, D. J.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
[Crossref]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Psaltis, D.

C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express 18(12), 12283–12290 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Pu, Y.

Ruan, H.

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

Samatham, R.

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
[Crossref] [PubMed]

Senekerimyan, V.

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

Smithies, O.

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

Viasnoff, V.

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
[Crossref]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yang, C.

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

M. Jang, H. Ruan, H. Zhou, B. Judkewitz, and C. Yang, “Method for auto-alignment of digital optical phase conjugation systems based on digital propagation,” Opt. Express 22(12), 14054–14071 (2014).
[Crossref] [PubMed]

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18(4), 3444–3455 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yaqoob, Z.

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

Zhou, H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101(8), 081108 (2012).
[Crossref] [PubMed]

Hypertension (1)

J. H. Krege, J. B. Hodgin, J. R. Hagaman, and O. Smithies, “A noninvasive computerized tail-cuff system for measuring blood pressure in mice,” Hypertension 25(5), 1111–1115 (1995).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” IEEE J. Quantum Electron. 14(9), 650–660 (1978).
[Crossref]

J. Biomed. Opt. (2)

E. J. McDowell, M. Cui, I. M. Vellekoop, V. Senekerimyan, Z. Yaqoob, and C. Yang, “Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation,” J. Biomed. Opt. 15(2), 025004 (2010).
[Crossref] [PubMed]

R. Samatham, S. L. Jacques, and P. Campagnola, “Optical properties of mutant versus wild-type mouse skin measured by reflectance-mode confocal scanning laser microscopy (rCSLM),” J. Biomed. Opt. 13(4), 041309 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation,” Nat. Photonics 6(10), 657–661 (2012).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical Phase Conjugation for Turbidity Suppression in Biological Samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Med. Biol. (1)

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

V. Viasnoff, F. Lequeux, and D. J. Pine, “Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics,” Rev. Sci. Instrum. 73(6), 2336 (2002).
[Crossref]

Sci. Rep. (1)

H. Ruan, M. Jang, B. Judkewitz, and C. Yang, “Iterative Time-Reversed Ultrasonically Encoded Light Focusing in Backscattering Mode,” Sci. Rep. 4, 7156 (2014).
[Crossref] [PubMed]

Other (3)

I. M. Vellekoop and C. M. Aegerter, “Focusing light through living tissue,” in Proceedings of SPIE, J. A. Izatt, J. G. Fujimoto, and V. V. Tuchin, eds. (2010), Vol. 7554, p. 755430.
[Crossref]

A. Ewald, Z. Werb, and M. Egeblad, “Monitoring of vital signs for long-term survival of mice under anesthesia,” Cold Spring Harb. Protoc. 2011, (2011).

T. Laforest and A. Dupret, “A 4000 Hz CMOS image sensor with in-pixel processing for light measurement and modulation,” New Circuits Syst. Conf. IEEE 11th Int. 1–4 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

DOPC process through moving scatterers. As the first step of the DOPC process, the signal light beam (collimated beam) is incident on the multiple-scattering sample and its disordered wavefront is recorded from the sensor on the other side of the sample (left). Then, if the scatterers’ configuration is static during the DOPC process –wavefront calculation and playback on the spatial light modulator (SLM) – the OPC beam retraces the original scattering trajectories, which in turn reconstructs the signal light field from the opposite side (right top). However, if the scatterers move during the DOPC process, the time-reversal symmetry is broken so that the OPC beam cannot retrace its original trajectory. Thus, the original signal light field is not properly reconstructed (right bottom).

Fig. 2
Fig. 2

Experimental setup. (a) The experimental setup used for the tissue phantom and the beam paths used for wavefront measurement. The laser beam is split into two beam paths: the signal beam and reference beam. Both beams are spatially filtered through the single mode fiber and collimated. The reference beam is normally incident on both SCMOS sensor (sCMOS1) and SLM. The signal beam is split into two paths – one for the speckle autocorrelation measurement and one for the DOPC procedure. The signal beam for the DOPC procedure propagates through the tissue phantom and is obliquely guided (1.8 °) on the sensor plane so that we are able to use the off-axis holographic method. BB1 blocks the signal beam for speckle measurement at this step. (b) The experimental setup and beam paths used for the synchronized measurement of the speckle autocorrelation function and OPC spot intensity. The laser source, spatial filters, collimation lens shown in (a) are omitted. The phase-conjugated copy of the measured wavefront is displayed on the SLM. Next the reconstructed OPC beam, which is collimated as it propagates through the dorsal skin, is measured from the APD and the CCD. The signal beam for the DOPC procedure (shown in (a)) was blocked while monitoring the intensity of the OPC beam. A 50-µm pinhole was placed in front of the APD to allow only the phase-conjugated mode. Three beam blockers are in place to block unwanted back-reflections that would prevent synchronized measurement. BB1 blocks the signal beam for the DOPC procedure after the OPC wavefront is recorded so that its back-reflected portion does not interfere with the OPC beam at the APD. BB2 blocks the back-reflection of the OPC beam to the sCMOS camera capturing the transmitted speckle pattern. BB3 blocks the signal beam for speckle measurement from entering into the DOPC system. SF = spatial filter; 1X TS = 1X telescope; PH = pinhole; BB = beam block; MFW = motorized filter wheel; LP = linear polarizer; SLM = spatial light modulator; sCMOS = scientific CMOS camera; CCD = CCD camera; APD = avalanche photodiode.

Fig. 3
Fig. 3

Simultaneously-measured speckle intensity autocorrelation function and the OPC spot intensity through a tissue phantom. (a) 1/e decay time of the speckle intensity autocorrelation function and OPC spot intensity. As gel is cured at room temperature, the decay time becomes longer. This shows that the degradation of the OPC turbidity suppression shares the same time constant as the speckle decorrelation. For the first measurement, after 60 s of curing time, the OPC decay time could not be measured because the decorrelation is faster than the system latency. (b1-b3) The speckle autocorrelation function (blue) and the turbidity suppression (red) at different curing times: the time axis in b1, b2 and b3 are referenced at the curing time of 104 s, 185 s and 375 s respectively. For different time scales, the two curves show close agreement in the time characteristic. In b3, greater fluctuation in the OPC spot intensity and the speckle autocorrelation function are observed as a result of the interference between the stable portion (changing slowly) and the decorrelating portion of the sample-transmitted light field.

Fig. 4
Fig. 4

Experimental setup. The laser source, spatial filters, collimation lens shown in Fig. 2 are omitted. (a) The experimental setup used for the mouse dorsal skin flap and the beam paths used for the speckle measurement. The signal beam path used for the DOPC procedure was used for speckle measurement as well for the mouse dorsal skin flap. The time-lapse speckle pattern is measured with the sCMOS camera in the DOPC system. The reference beam is blocked. (b) The experimental setup and beam paths used for the measurement of the OPC spot intensity. The signal beam wavefront is measured using the off-axis holographic method described in Fig. 2(a). The phase-conjugated copy of the measured wavefront is displayed on the SLM. The reconstructed OPC beam is measured from the APD and the CCD. The inset shows the mouse dorsal skin flap model we used. We pinched mouse dorsal skin with two acrylic plates secured by four bolts and nuts. The speckle intensity autocorrelation function and the OPC spot are measured with three different configurations. 1X TS = 1X telescope; PH = pinhole; BB = beam block; LP = linear polarizer; SLM = spatial light modulator; sCMOS = scientific CMOS camera; CCD = CCD camera; APD = avalanche photodiode.

Fig. 5
Fig. 5

Speckle intensity autocorrelation function and turbidity suppression fidelity measured through a mouse’s dorsal skin flap. The solid lines (blue: speckle autocorrelation function, red: turbidity suppression fidelity) present the measured data and the dotted lines present two term exponential fit curves. The decorrelation characteristic time is determined as the time in which the fit curve drops to 1/e . (a) Because the dorsal skin is significantly immobilized (directly pinched with pressure of ~5 psi), both the autocorrelation function and the OPC turbidity suppression fidelity decrease slowly. The decorrelation characteristic time is around 2 s. The periodic oscillation of the signal is caused by respiratory movement. (b) When only the surrounding region is pinched (the laser beam is incident on the clear hole), the decorrelation characteristic time is only slightly changed. However, the autocorrelation function and the OPC spot intensity is not observed after ~10 s. (c) Finally, if the skin is unclamped (tip of skin is glued to a rod) and is not immobilized by any physical means, the decorrelation characteristic time is decreased to ~50 ms. For all three cases, we observed a high level of agreement between the speckle intensity autocorrelation and the turbidity suppression fidelity profile. 12 profiles were averaged to sample different breathing and heartbeat phases.

Fig. 6
Fig. 6

Three typical time traces of the turbidity suppression fidelity (without averaging) in the low speckle intensity correlation regime. (a) The dorsal skin is pinched directly as in Fig. 5(a). (b) The dorsal skin is not immobilized as in Fig. 5(c). The shape of the profiles varies depending on the breathing and heartbeat phase.

Fig. 7
Fig. 7

(a) The OPC reconstructed spot and (b) the background measured through the dorsal skin of the euthanized mouse. (c-e) Time-lapse images of the OPC reconstructed spot captured 0.2 s, 40 s, 60 s after the OPC wavefront measurement. The spot decays over time and oscillates at the breathing frequency. The frame rate is around 4 Hz.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

g 2 (τ) m I m ( t 0 ) I m ( t 0 +τ) /M m I m ( t 0 ) /M m I m ( t 0 +τ) /M 1
g 2 (τ) m I m ( t 0 ) I m ( t 0 +τ) /M I ¯ 2 1.
g 2 (τ) I( t 0 )I( t 0 +τ) I 2 1.
I OPC (τ)=A | m T m ( t 0 +τ) T m * ( t 0 ) | 2 | m T m ( t 0 ) T m * ( t 0 ) | 2
F(τ)= I OPC (τ) I OPC (0) .
g 2 (τ)=β | g 1 (τ) | 2 .
g 1 (τ)= m E m * ( t 0 ) E m ( t 0 +τ) m E m * ( t 0 ) E m ( t 0 ) m E m * ( t 0 +τ) E m ( t 0 +τ)
g 1 (τ) m T m * ( t 0 ) T m ( t 0 +τ) m T m * ( t 0 ) T m ( t 0 ) .
F(τ)= | g 1 (τ) | 2 .
g 2 (τ)=βF(τ).

Metrics