Abstract

Tissue optical and mechanical properties are correlated to tissue pathologic changes. This manuscript describes a dual-mode ultrasound modulated optical imaging system capable of sensing local optical and mechanical properties in reflection geometry. The optical characterisation was achieved by the acoustic radiation force assisted ultrasound modulated optical tomography (ARF-UOT) with laser speckle contrast detection. Shear waves generated by the ARF were also tracked optically by the same system and the shear wave speed was used for the elasticity measurement. Tissue mimicking phantoms with multiple inclusions buried at 11 mm depth were experimentally scanned with the dual-mode system. The inclusions, with higher optical absorption and/or higher stiffness than background, were identified based on the dual results and their stiffnesses were quantified. The system characterises both optical and mechanical properties of the inclusions compared with the ARF-UOT or the elasticity measurement alone. Moreover, by detecting the backward scattered light in reflection detection geometry, the system is more suitable for clinical applications compared with transmission geometry.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography

Rui Li, Daniel S. Elson, Chris Dunsby, Robert Eckersley, and Meng-Xing Tang
Opt. Express 19(8) 7299-7311 (2011)

Ultrasound-modulated optical tomography with intense acoustic bursts

Roger J. Zemp, Chulhong Kim, and Lihong V. Wang
Appl. Opt. 46(10) 1615-1623 (2007)

Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples

Marjan Razani, Timothy W.H. Luk, Adrian Mariampillai, Peter Siegler, Tim-Rasmus Kiehl, Michael C. Kolios, and Victor X.D. Yang
Biomed. Opt. Express 5(3) 895-906 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
    [Crossref] [PubMed]
  2. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  3. M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
    [Crossref] [PubMed]
  4. L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
    [Crossref] [PubMed]
  5. E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
    [Crossref]
  6. C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425 (2006).
    [Crossref] [PubMed]
  7. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
    [Crossref] [PubMed]
  8. J. Li, G. Ku, and L. V. Wang, “Ultrasound-Modulated Optical Tomography of Biological Tissue by Use of Contrast of Laser Speckles,” Appl. Opt. 41(28), 6030–6035 (2002).
    [Crossref] [PubMed]
  9. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26(15), 1191–1193 (2001).
    [Crossref] [PubMed]
  10. A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
    [Crossref] [PubMed]
  11. R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
    [Crossref] [PubMed]
  12. M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
    [Crossref] [PubMed]
  13. K. Nightingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
    [Crossref] [PubMed]
  14. P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
    [Crossref] [PubMed]
  15. J. K. Seo and E. J. Woo, “Magnetic Resonance Elastography,” in Nonlinear Inverse Problems in Imaging (John Wiley & Sons, Ltd, 2013), pp. 335–353.
  16. S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
    [Crossref] [PubMed]
  17. Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
    [Crossref] [PubMed]
  18. S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
    [Crossref] [PubMed]
  19. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  20. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

2012 (1)

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

2011 (5)

K. Nightingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

2010 (2)

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
[Crossref] [PubMed]

2008 (1)

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

2007 (1)

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

2006 (1)

2005 (1)

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

2002 (1)

2001 (2)

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26(15), 1191–1193 (2001).
[Crossref] [PubMed]

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1991 (1)

Boccara, A.-C.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Bossy, E.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Bouchard, R. R.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Cheng, Y.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Daoudi, K.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Dunsby, C.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Eckersley, R.

Eckersley, R. J.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Elson, D. S.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Fink, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Funke, A. R.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

Huang, Z.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Kim, C.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425 (2006).
[Crossref] [PubMed]

Ku, G.

Li, J.

Li, R.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Li, S.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Li, Y.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

Liang, H.-D.

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Moes, C. J. M.

Nightingale, K.

K. Nightingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

Nightingale, K. R.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Nightingale, R. W.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Nyborg, W. L.

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
[Crossref] [PubMed]

Palmeri, M. L.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Prahl, S. A.

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
[Crossref] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
[Crossref] [PubMed]

Sharma, A. C.

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Song, L.

Song, S.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

Tang, M. X.

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Tang, M.-X.

S. Li, Y. Cheng, L. Song, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Tracking shear waves in turbid medium by light: theory, simulation, and experiment,” Opt. Lett. 39(6), 1597–1600 (2014).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express 19(8), 7299–7311 (2011).
[Crossref] [PubMed]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

Tanter, M.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wagner, K. H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

C. Kim, R. J. Zemp, and L. V. Wang, “Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography,” Opt. Lett. 31(16), 2423–2425 (2006).
[Crossref] [PubMed]

J. Li, G. Ku, and L. V. Wang, “Ultrasound-Modulated Optical Tomography of Biological Tissue by Use of Contrast of Laser Speckles,” Appl. Opt. 41(28), 6030–6035 (2002).
[Crossref] [PubMed]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26(15), 1191–1193 (2001).
[Crossref] [PubMed]

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref] [PubMed]

Wang, R. K.

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

Wells, P. N. T.

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Zemp, R. J.

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93(1), 011111 (2008).
[Crossref] [PubMed]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Curr. Med. Imaging Rev. (1)

K. Nightingale, “Acoustic Radiation Force Impulse (ARFI) Imaging: a Review,” Curr. Med. Imaging Rev. 7(4), 328–339 (2011).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. L. Palmeri, A. C. Sharma, R. R. Bouchard, R. W. Nightingale, and K. R. Nightingale, “A finite-element method model of soft tissue response to impulsive acoustic radiation force,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1699–1712 (2005).
[Crossref] [PubMed]

Interface Focus (1)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1(4), 632–648 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

S. Song, Z. Huang, and R. K. Wang, “Tracking mechanical wave propagation within tissue using phase-sensitive optical coherence tomography: motion artifact and its compensation,” J. Biomed. Opt. 18(12), 121505 (2013).
[Crossref] [PubMed]

J. R. Soc. Interface (1)

P. N. T. Wells and H.-D. Liang, “Medical ultrasound: imaging of soft tissue strain and elasticity,” J. R. Soc. Interface 8(64), 1521–1549 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. V. Wang, “Mechanisms of Ultrasonic Modulation of Multiply Scattered Coherent Light: An Analytic Model,” Phys. Rev. Lett. 87(4), 043903 (2001).
[Crossref] [PubMed]

Proc. Inst. Mech. Eng. H (1)

M. X. Tang, D. S. Elson, R. Li, C. Dunsby, R. J. Eckersley, and P. N. T. Wells, “Photoacoustics, thermoacoustics, and acousto-optics for biomedical imaging,” Proc. Inst. Mech. Eng. H 224(2), 291–306 (2010).
[Crossref] [PubMed]

Ultrasound Med. Biol. (2)

A. P. Sarvazyan, O. V. Rudenko, and W. L. Nyborg, “Biomedical Applications of Radiation Force of Ultrasound: Historical Roots and Physical Basis,” Ultrasound Med. Biol. 36(9), 1379–1394 (2010).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M.-X. Tang, “Shear Wave Elasticity Imaging Based on Acoustic Radiation Force and Optical Detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Other (1)

J. K. Seo and E. J. Woo, “Magnetic Resonance Elastography,” in Nonlinear Inverse Problems in Imaging (John Wiley & Sons, Ltd, 2013), pp. 335–353.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Top view of the experimental set-up. The rectangle depicts the cross-section of phantom which is 180 * 22 mm in size. The laser and the charge-coupled device (CCD) camera are positioned on the same side of the phantom and separated by 32 mm. The laser axis is in the y-direction, which is perpendicular to the CCD plane and the axis of the ultrasound (US) which lies along the z-axis. P1 and P2 are two US focal positions that lie on the laser axis and separated by 2 mm. The relative positions of P1 and P2 to the phantom surface were unchanged in the experiment. The green colouring represents the photon probability density found by Monte Carlo simulation [19], where darker colours indicate high photon density and thus high sensitivity of detection.
Fig. 2
Fig. 2 (a) Schematic of the two-inclusion heterogeneous phantom. The size of the phantom is 180 * 22 * 80 mm. The size of the inclusions is 6 mm in diameter and length. The distance between the inclusions is ~24 mm. The left inclusion is for mechanical contrast whereas the right is for optical (absorption) contrast. (b) Schematic of the three-inclusion heterogeneous phantom. The size of the phantom and the inclusions are the same as in (a). From left to right, the inclusions are for mechanical, optical and combined optical and mechanical contrast.
Fig. 3
Fig. 3 Typical contrast difference signals for P1 and P2 at a certain position of the scan without any inclusion in the light volume. The blue curve is the time-resolved signal for P1 and the red curve is the signal for P2. The standard deviation was obtained by repeating measurement three times. a1 and a2 are the two values acquired at t = 0 ms and correspond to the modulation of ultrasound and ARF. ∆T is the time difference between the peaks of the two curves and indicates the time-of-flight of the shear wave between P1 and P2.
Fig. 4
Fig. 4 (a) Photo of the cross section of the two-inclusion heterogeneous phantom. The red circle depicts the region of the mechanical inclusion and the black spot is the optical inclusion. The red arrow indicates the direction of the phantom stepping and the total stepping length is 60 mm with 1 mm step size. The start and end points for the scan are also shown in the figure. (b) 1D scan result for the two-inclusion heterogeneous phantom. The blue curve is the UOT signal when the ultrasound is focused at P2 and the green curve is the stiffness measurement. The standard deviation was from three repeated measurements at each step position. The positions of the inclusions are indicated by the shaded areas in the figure. A and B are the positions of the maximum and minimum contrast difference.
Fig. 5
Fig. 5 (a) Photo of the phantom cross section where the three inclusions from the left to right are for mechanical (red circle), optical (dark spot) and combined mechanical and optical contrast (dark spot). They are separated by ~25 mm from each other. The red arrow indicates the phantom stepping direction and the total stepping length is 75 mm. (b) 1D scan results for the three-inclusion heterogeneous phantom. The blue solid curve with circular points is the UOT signal for P2 and the green solid line is the stiffness. The error bars are the standard deviations of three repeated measurements at each stepping position. The positions of the inclusions are indicated by the shaded areas in the figure.

Tables (1)

Tables Icon

Table 1 Stiffness of phantom measured with optical detection and an independent compression test

Metrics