Abstract

To improve the reproducibility of photocoagulation, the ability to quantitatively monitor the thermal change of laser-irradiated retinal tissue is required. Recently, optical coherence tomography has enabled non-invasive and non-contact monitoring of the tissue structural changes during laser irradiation. To further improve the capability of this technique, a method is proposed to measure tissue displacement by simultaneously using Doppler phase shifts and correlation coefficients. The theoretical approach for this method is described, and its performance is experimentally confirmed and evaluated. Finally, lateral and axial displacements in the laser-irradiated retinal tissues of an enucleated porcine eye are observed. The proposed method is found to be useful for further understanding the direct thermal response of laser-irradiated retinal tissue.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT

Heike H. Müller, Lars Ptaszynski, Kerstin Schlott, Christina Debbeler, Marco Bever, Stefan Koinzer, Reginald Birngruber, Ralf Brinkmann, and Gereon Hüttmann
Biomed. Opt. Express 3(5) 1025-1046 (2012)

In-plane and out-of-plane tissue micro-displacement measurement by correlation coefficients of optical coherence tomography

Kazuhiro Kurokawa, Shuichi Makita, Young-Joo Hong, and Yoshiaki Yasuno
Opt. Lett. 40(9) 2153-2156 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema: Early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol. 103, 1796–1806 (1985).
    [Crossref]
  2. Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98, 766–785 (1991).
    [Crossref]
  3. Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion: A randomized clinical trial,” Arch. Ophthalmol. 104, 34–41 (1986).
    [Crossref]
  4. The Central Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol. 115, 486–491 (1997).
    [Crossref]
  5. G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
    [Crossref] [PubMed]
  6. S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
    [Crossref]
  7. K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
    [Crossref]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  9. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
    [Crossref] [PubMed]
  10. H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
    [Crossref] [PubMed]
  11. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
    [Crossref]
  12. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19, 6623–6634 (2011). PMID: .
    [Crossref] [PubMed]
  13. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).
    [Crossref] [PubMed]
  14. C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
    [Crossref] [PubMed]
  15. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17, 8125–8136 (2009).
    [Crossref] [PubMed]
  16. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20, 16567–16583 (2012).
    [Crossref]
  17. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).
    [Crossref]
  18. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
    [Crossref] [PubMed]
  19. S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
    [Crossref] [PubMed]
  20. T. R. Hillman, S. G. Adie, V. Seemann, J. J. Armstrong, S. L. Jacques, and D. D. Sampson, “Correlation of static speckle with sample properties in optical coherence tomography,” Opt. Lett. 31, 190–192 (2006).
    [Crossref] [PubMed]
  21. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
    [Crossref]
  22. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).
  23. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
    [Crossref] [PubMed]
  24. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range doppler spectral domain optical coherence tomography,” Opt. Express 18, 1358–1372 (2010).
    [Crossref] [PubMed]
  25. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

2012 (5)

X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20, 16567–16583 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2007 (1)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
[Crossref] [PubMed]

2006 (3)

2004 (1)

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

The Central Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol. 115, 486–491 (1997).
[Crossref]

1991 (2)

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98, 766–785 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1986 (1)

Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion: A randomized clinical trial,” Arch. Ophthalmol. 104, 34–41 (1986).
[Crossref]

1985 (2)

Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema: Early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol. 103, 1796–1806 (1985).
[Crossref]

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

1976 (1)

Adie, S. G.

Ahmad, A.

Armstrong, J. J.

Baade, A.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

Bever, M.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Birngruber, R.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

Boppart, S. A.

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
[Crossref] [PubMed]

Brinkmann, R.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

Caliebe, A.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

Chaney, E. J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Debbeler, C.

Duncan, D. D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Framme, C.

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gerstmann, D. K.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Goodman, J. W.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hillman, T. R.

Hong, Y.-J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.

Hüttmann, G.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

Jacques, S. L.

Jahan, I.

Jaillon, F.

Kang, J. U.

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

Kennedy, B. F.

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[Crossref] [PubMed]

Kleemann, S.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

Koinzer, S.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

Kurokawa, K.

Liang, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Liu, X.

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

Makita, S.

Miura, Y.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

Müller, H. H.

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Ptaszynski, L.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Quirk, B. C.

Roider, J.

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

Saeger, M.

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

Sampson, D. D.

Sasaki, K.

Schlott, K.

H. H. Müller, L. Ptaszynski, K. Schlott, C. Debbeler, M. Bever, S. Koinzer, R. Birngruber, R. Brinkmann, and G. Hüttmann, “Imaging thermal expansion and retinal tissue changes during photocoagulation by high speed OCT,” Biomed. Opt. Express 3, 1025–1046 (2012).
[Crossref] [PubMed]

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

Schmitt, J.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Schüle, G.

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Seemann, V.

Sharma, U.

Standish, B.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sun, C.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
[Crossref] [PubMed]

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
[Crossref] [PubMed]

Vuong, B.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

Wang, R. K.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[Crossref] [PubMed]

Wen, X.-Y.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Yabusaki, M.

Yang, V.

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

Yasuno, Y.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89, 144103 (2006).
[Crossref]

Arch. Ophthalmol. (3)

Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema: Early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol. 103, 1796–1806 (1985).
[Crossref]

Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion: A randomized clinical trial,” Arch. Ophthalmol. 104, 34–41 (1986).
[Crossref]

The Central Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol. 115, 486–491 (1997).
[Crossref]

Biomed. Opt. Express (1)

IEEE Trans. Sonics and Ultrasonics (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics and Ultrasonics 32, 458–464 (1985).
[Crossref]

Investigative Ophthalmol. Vis. Sci. (1)

S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, S. Kleemann, M. Saeger, A. Baade, A. Caliebe, Y. Miura, R. Birngruber, R. Brinkmann, and J. Roider, “Temperature-controlled retinal photocoagulation – a step toward automated laser treatment,” Investigative Ophthalmol. Vis. Sci. 53, 3605–3614 (2012).
[Crossref]

J. Biomed. Opt. (5)

K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, A. Baade, J. Roider, R. Birngruber, and R. Brinkmann, “Automatic temperature controlled retinal photocoagulation,” J. Biomed. Opt. 17, 0612231–0612238 (2012).
[Crossref]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt. 12, 020501 (2007).
[Crossref] [PubMed]

G. Schüle, C. Framme, J. Roider, R. Brinkmann, and G. Hüttmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt. 9, 173–179 (2004).
[Crossref] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).
[Crossref] [PubMed]

C. Sun, B. Standish, B. Vuong, X.-Y. Wen, and V. Yang, “Digital image correlation-based optical coherence elastography,” J. Biomed. Opt. 18, 121515 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Ophthalmology (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy: ETDRS report number 9,” Ophthalmology 98, 766–785 (1991).
[Crossref]

Opt. Express (8)

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17, 8125–8136 (2009).
[Crossref] [PubMed]

X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20, 16567–16583 (2012).
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19, 6623–6634 (2011). PMID: .
[Crossref] [PubMed]

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).
[Crossref] [PubMed]

S. Makita, F. Jaillon, I. Jahan, and Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014).
[Crossref] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[Crossref] [PubMed]

F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range doppler spectral domain optical coherence tomography,” Opt. Express 18, 1358–1372 (2010).
[Crossref] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11585–11597 (2006).
[Crossref] [PubMed]

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, New York, 1998).

Supplementary Material (1)

» Media 1: MOV (573 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) The biological sample is modeled as a cylindrical shape. The coagulation laser is applied at a particular position on the sample. (b) The top cross-sectional view of the sample. The thermal expansion/contraction is modeled as axially-symmetric radial displacements in the xy plane. (c) The side cross-sectional view of the sample. The thermal expansion/contraction is modeled as in-plane displacements in the xz plane. The black arrows indicate the displacement vectors. The pink ellipse indicates the main absorber of the sample.
Fig. 2
Fig. 2 The flowchart of the processing steps.
Fig. 3
Fig. 3 The inverse of the estimated correction parameters (a) 1 γ ( x , z ) and the estimated resolution parameters (b) ŵl(x, z) and (c) ŵz(x, z) of the tissue phantom. These of the porcine retina are shown in (d), (e) and (f), respectively.
Fig. 4
Fig. 4 (a) Representative B-scan image of tissue phantom. The red, green, blue and purple crosses indicate the randomly selected positions (P1–P4). (b) The noise-free sample correlation coefficient |ρ′sx)R to R+1| is plotted as a function of the lateral shift. (b) The noise-free sample correlation coefficient |ρ′sz)R to R+1| is plotted as a function of the axial shift.
Fig. 5
Fig. 5 Experimental setup. (a) The sample arm for experimental verification. A cover slip is used to compensate for the drift of the interferometer in Section.4.1. (b) The sample arm for ex vivo experiments.
Fig. 6
Fig. 6 (a) Representative B-scan image of the tissue phantom. The red box indicates the selected region of interest. A yellow arrow indicates the calibration signal generated by a cover slip. (b) The means of the mean displacements are plotted as a function of the translation stage position. Red and blue crosses indicate the lateral and axial translations, respectively. (c) The standard deviations of the mean displacements among six repetitive measurements are plotted as a function of the translation stage position. Red and blue crosses indicate lateral and axial translations, respectively.
Fig. 7
Fig. 7 (a) OCT B-scan intensity image at t = 24 ms. Red boxes indicate the regions of interest. Each sub-figure shows (b) a 2D displacement map where the color hue represents the directions of the displacement as represented in a color wheel, (c) a noise-free sample correlation coefficient map, (d) the Doppler phase shift prior to phase unwrapping, (e) the measured lateral displacement, and (f) the measured axial displacement.
Fig. 8
Fig. 8 The OCT intensity (first row), the noise-free sample correlation coefficients (second row), the Doppler phase shifts (third row) and the displacement map (fourth row) are shown at different time points. The full sequence of images is shown in Media 1, in which the duration of the laser irradiation is indicated by the green frame.
Fig. 9
Fig. 9 (a) Representative OCT B-scan image of the tissue phantom. The red cross (+), green cross (×), blue box, and purple triangle indicate the randomly-selected positions (P1–P4). The lateral displacements using (b) method-1 and (c) method-2. The axial displacements using (d) method-1 and (e) method-2. The red crosses (+), green crosses (×), blue boxes, and purple triangles represent the average displacement at P1–P4, respectively. The red circles represent the standard deviations of the measured displacement among P1–P4.
Fig. 10
Fig. 10 The inverse of the estimated correction parameters (a) 1 γ ( x , z ) of the tissue phantom and 1/γ at the position indicated by a red cross is plotted as a function of time-interval between two B-scans (b). These of the porcine retina are shown in (c) and (d), respectively.
Fig. 11
Fig. 11 The measured lateral and axial displacements are plotted as a function of B-scan ID. Displacements are observed at the (a) RPE complex and (b) neural retinal layer. The yellow region indicates the duration of the laser irradiation.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

h ( r ) = exp [ 2 ( x 2 + y 2 w l 2 ) ] exp [ 2 ( z 2 w z 2 ) ] exp [ 2 i k c ( z z 0 ) ] ,
ρ h ( Δ x , Δ y , Δ z ; w l , w z ) = exp [ ( Δ x 2 + Δ y 2 w l 2 + Δ z 2 w z 2 ) ] exp [ i 2 k c Δ z ] .
| Δ x | = w l ln | ρ h | Δ z 2 w z 2 ,
Δ z = λ c 4 n π 𝒰 [ Δ ϕ ] ,
| Δ x ( x , z ) | = w l ( x , z ) ln | ρ h ( x , z ) | Δ z ( x , z ) 2 w z ( x , z ) 2 ,
Δ z ( x , z ) = λ 4 n π 𝒰 [ Δ ϕ ( x , z ) ] .
s ( x , z ) = η ( x , z ) * h ( x , z ) ,
ρ S = E [ S 1 * S 2 ] E [ | S 1 | 2 ] E [ | S 2 | 2 ] ,
ρ G = E [ G 1 * G 2 ] E [ | G 1 | 2 ] E [ | G 2 | 2 ] ,
| ρ S | = | ρ G | ( 1 + SNR 1 1 ) ( 1 + SNR 2 1 ) .
ρ g ( x , z ) = ξ ζ g R * ( x + ξ , z + ζ ) g T ( x + ξ , z + ζ ) ξ ζ | g R ( x + ξ , z + ζ ) | 2 ξ ζ | g T ( x + ξ , z + ζ ) | 2 ,
| ρ s ( x , z ) | = | ρ g ( x , z ) | × ( 1 + SNR R 1 ( x , z ) ) ( 1 + SNR T 1 ( x , z ) ) ,
SNR n ( x , z ) = ξ ζ | g n ( x + ξ , z + ζ ) | 2 ξ ζ | N ( x + ξ , z + ζ ) | 2 ξ ζ | N ( x + ξ , z + ζ ) | 2 ,
γ ( x , z ) 1 | ρ s ( x , z ) R to R + 1 | ,
| Δ x ( x , z ) | = w l ( x , z ) ln γ ( x , z ) ln | ρ s ( x , z ) | Δ z ( x , z ) 2 w z ( x , z ) 2 .
Δ ϕ ( x , z ) = ρ g ( x , z ) = [ ξ ζ g R * ( x + ξ , z + ζ ) g T ( x + ξ , z + ζ ) ] .
| ρ s ( x , z ; Δ x , Δ z ) R to R + 1 | = 1 γ ( x , z ) exp [ ( Δ x 2 w l 2 ( x , z ) + Δ z 2 w z 2 ( x , z ) ) ] ,
| Δ x ( x , z ) | = w l ( x , z ) ln γ ( x , z ) ln | ρ s ( x , z ) | ,
| Δ z ( x , z ) | = w z ( x , z ) ln γ ( x , z ) ln | ρ s ( x , z ) | .

Metrics