Abstract

In current clinical practice, the diagnosis of cervical cancer (CC) is mainly through the cervical screening followed by a necessary biopsy, but this method is labor consuming and expensive, and can only detect superficial lesions around the external cervical orifice. In contrast, photoacoustic imaging (PAI) is sensitive to the abnormal angiogenesis deep in the biological tissue, and may be capable for the intact scanning both around the external orifice and in cervical canal. In this paper, we for the first time put forward the photoacoustic diagnosis of CC. A total of 30 in-vitro experiments were carried out in this study, and the obtained depth maximum amplitude projection (DMAP) images were analyzed to evaluate the extent of the angiogenesis for different clinical stages of CC. Stronger absorption from the cervical lesions is observed relative to that of normal tissue. Paired t-test indicates that the difference in mean optical absorption (MOA) between normal tissue and cervical lesion has statistical significance with a confidential coefficient of 0.05. Statistical results also show that the MOAs of the cervical lesions are closely related to the severity of CC. These results imply that PAI may have great utility in the clinical diagnosis of CC.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
    [Crossref] [PubMed]
  2. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
    [Crossref] [PubMed]
  3. J. M. Agosti and S. J. Goldie, “Introducing HPV vaccine in developing countries--key challenges and issues,” N. Engl. J. Med. 356(19), 1908–1910 (2007).
    [Crossref] [PubMed]
  4. I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
    [Crossref] [PubMed]
  5. D. Ferris, T. Cox, D. Connor, and V. Wright, Modern Colposcopy Textbook and Atlas (Lippincott Williams & Wilkins, 2011).
  6. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
    [Crossref] [PubMed]
  7. S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
    [Crossref] [PubMed]
  8. R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
    [Crossref] [PubMed]
  9. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
    [Crossref] [PubMed]
  10. D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
    [Crossref] [PubMed]
  11. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
    [Crossref] [PubMed]
  12. L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
    [Crossref] [PubMed]
  13. I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
    [Crossref] [PubMed]
  14. W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
    [Crossref] [PubMed]
  15. C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
    [Crossref] [PubMed]
  16. J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
    [Crossref] [PubMed]
  17. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
    [Crossref] [PubMed]
  18. H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
    [Crossref] [PubMed]
  19. C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
    [Crossref]
  20. D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
    [Crossref] [PubMed]
  21. D. Kerrigan, “Identifying Molecular Culprits of Cervical Cancer Progression,” http://home.ccr.cancer.gov/inthejournals/archives/Gius_03.asp .
  22. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo Imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  23. L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
    [Crossref] [PubMed]
  24. S. Manohar, S. E. Vaartjes, J. C. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
    [Crossref] [PubMed]
  25. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
    [Crossref] [PubMed]
  26. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
    [Crossref] [PubMed]
  27. V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
    [PubMed]
  28. C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
    [Crossref] [PubMed]
  29. A. R. John, Athematical Statistics and Data Analysis (Cengage Learning, 2006).
  30. J. L. Myers and A. D. Well, Research design and statistical analysis (Routledge, 2003).
  31. J. Wei, “Pathology of Cervical Carcinoma,” http://www.glowm. com/section_view/heading/Pathology%20of%20Cervical%20Carcinoma/item/230 .
  32. J. W. Sellors and R. Sankaranarayanan, “Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginner's Manual,” http://screening.iarc.fr/colpochap.php?chap=2 .
  33. B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).
  34. J. M. Yang, R. M. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
  35. Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39(11), 6895–6899 (2012).
    [Crossref] [PubMed]

2014 (1)

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

2012 (3)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo Imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. M. Yang, R. M. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39(11), 6895–6899 (2012).
[Crossref] [PubMed]

2011 (1)

I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
[Crossref] [PubMed]

2010 (4)

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

2009 (1)

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

2008 (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

2007 (3)

J. M. Agosti and S. J. Goldie, “Introducing HPV vaccine in developing countries--key challenges and issues,” N. Engl. J. Med. 356(19), 1908–1910 (2007).
[Crossref] [PubMed]

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[Crossref] [PubMed]

2006 (4)

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

2005 (4)

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[Crossref] [PubMed]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[Crossref] [PubMed]

2004 (1)

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

2002 (2)

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

2001 (2)

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26(10), 701–703 (2001).
[Crossref] [PubMed]

2000 (1)

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Agosti, J. M.

J. M. Agosti and S. J. Goldie, “Introducing HPV vaccine in developing countries--key challenges and issues,” N. Engl. J. Med. 356(19), 1908–1910 (2007).
[Crossref] [PubMed]

Arifler, D.

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

Baumgartner, R.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Bean, S. M.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Bentley, R. C.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Bhatt, R. A.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Binder, H.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Boiko, I.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Bradbury, C. M.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Braumann, U. D.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Bray, F.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

Brookner, C.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Brookner, C. K.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Buttin, B. M.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Cartwright, P. S.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Chang, V. T.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Chen, R. M.

Chuang, E. Y.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Cohn, D. E.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Collier, T.

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[Crossref] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Culver, J. P.

Dannecker, C.

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

Denny, L.

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

Diebold, J.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Drezek, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Drezek, R. A.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Einenkel, J.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Emelianov, S. Y.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Favazza, C.

Feng, S.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Ferlay, J.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

Fernandes, D. J.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Follen, M.

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Follen, M. R.

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

Forman, D.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

Fragouli, D. H.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Friese, K.

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

Funk, M. C.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Gallwas, J.

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

Gao, F.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Gao, S.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Gius, D.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Goldie, S. J.

J. M. Agosti and S. J. Goldie, “Introducing HPV vaccine in developing countries--key challenges and issues,” N. Engl. J. Med. 356(19), 1908–1910 (2007).
[Crossref] [PubMed]

Grobmyer, S. R.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Hillemanns, P.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Holboke, M. J.

Horn, L. C.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Horowitz, N. S.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo Imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Hu, Z.

Huettner, P. C.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Jarurak, N.

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

Jiang, H.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39(11), 6895–6899 (2012).
[Crossref] [PubMed]

Kappou, D.

I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
[Crossref] [PubMed]

Karpiouk, A. B.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Kartha, V. B.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Kim, C.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Klaase, J. M.

Koumantakis, E. E.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Krafft, C.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Ku, G.

Kuhn, L.

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

Kushtagi, P.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Lane, P.

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Li, C.

Lotan, R.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

MacAulay, C.

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Malini, R.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Malpica, A.

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Manohar, S.

Mathers, C.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

Mishra, M.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Murali Krishna, C.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Nguyen, L.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Niruthisard, S.

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

Ntziachristos, V.

Orfanoudaki, I. M.

I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
[Crossref] [PubMed]

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Palmer, G. M.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Panayiotides, J. G.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Parkin, D. M.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

Pavlova, I.

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Pisani, P.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

Pollack, A.

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

Powell, M. A.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Prathima, N. B.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Qian, W.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Rader, J. S.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Ramanujam, N.

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Richards-Kortum, R.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[Crossref] [PubMed]

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Richards-Kortum, R. R.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Salzer, R.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Shin, H. R.

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

Shung, K. K.

Sifakis, S.

I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
[Crossref] [PubMed]

Sifakis, S. K.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Smalling, R. W.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Sokolov, K. V.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Song, K. H.

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Steenbergen, W.

Steller, W.

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Stepp, H.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Stoica, G.

Su, J. L.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Thekkek, N.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

Themelis, G. C.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Tresukosol, D.

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

Triratanachat, S.

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

Trivijitsilp, P.

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

Turk, L.

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

Vaartjes, S. E.

Vadhiraja, B. M.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

van den Engh, F. M.

van Hespen, J. C.

van Leeuwen, T. G.

Vazgiouraki, E. M.

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

Vidyasagar, M. S.

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Wang, B.

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo Imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

J. M. Yang, R. M. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44(5), 770–775 (2005).
[Crossref] [PubMed]

Wang, X.

Weingandt, H.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Whitcomb, B. P.

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Wright, T. C.

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

Xi, L.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Xiang, W.

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

Xie, X.

Yang, J. M.

Yang, L.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Yao, J.

Yodh, A. G.

Yuan, Z.

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39(11), 6895–6899 (2012).
[Crossref] [PubMed]

Zhou, G.

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Zhou, Q.

Am. J. Obstet. Gynecol. (1)

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer, and C. Krafft, “Delimitation of squamous cell cervical carcinoma using infrared microspectroscopic imaging,” Anal. Bioanal. Chem. 384(1), 145–154 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Arch. Gynecol. Obstet. (1)

I. M. Orfanoudaki, D. Kappou, and S. Sifakis, “Recent advances in optical imaging for cervical cancer detection,” Arch. Gynecol. Obstet. 284(5), 1197–1208 (2011).
[Crossref] [PubMed]

BJOG (1)

H. Weingandt, H. Stepp, R. Baumgartner, J. Diebold, W. Xiang, and P. Hillemanns, “Autofluorescence spectroscopy for the diagnosis of cervical intraepithelial neoplasia,” BJOG 109(8), 947–951 (2002).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA Cancer J. Clin. 55(2), 74–108 (2005).
[Crossref] [PubMed]

Cancer (1)

L. Denny, L. Kuhn, A. Pollack, and T. C. Wright., “Direct visual inspection for cervical cancer screening: an analysis of factors influencing test performance,” Cancer 94(6), 1699–1707 (2002).
[Crossref] [PubMed]

Cancer Res. (1)

D. Gius, M. C. Funk, E. Y. Chuang, S. Feng, P. C. Huettner, L. Nguyen, C. M. Bradbury, M. Mishra, S. Gao, B. M. Buttin, D. E. Cohn, M. A. Powell, N. S. Horowitz, B. P. Whitcomb, and J. S. Rader, “Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates,” Cancer Res. 67(15), 7113–7123 (2007).
[Crossref] [PubMed]

Gastrointest. Endosc. Clin. N. Am. (1)

C. MacAulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620 (2004).
[Crossref] [PubMed]

Gynecol. Oncol. (1)

I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, “A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system,” Gynecol. Oncol. 96(1), 119–131 (2005).
[Crossref] [PubMed]

IEEE. J. Sel. Top. Quantum Electron. (1)

B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging,” IEEE. J. Sel. Top. Quantum Electron. 16(3), 588–599 (2010).

Int. J. Cancer (1)

J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” Int. J. Cancer 127(12), 2893–2917 (2010).
[Crossref] [PubMed]

Int. J. Gynecol. Cancer (1)

S. Triratanachat, S. Niruthisard, P. Trivijitsilp, D. Tresukosol, and N. Jarurak, “Angiogenesis in cervical intraepithelial neoplasia and early-staged uterine cervical squamous cell carcinoma: clinical significance,” Int. J. Gynecol. Cancer 16(2), 575–580 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

D. Arifler, C. MacAulay, M. R. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt. 11(6), 064027 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

L. Xi, S. R. Grobmyer, G. Zhou, W. Qian, L. Yang, and H. Jiang, “Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents,” J. Biophotonics 7(6), 401–409 (2014).
[Crossref] [PubMed]

Med. Phys. (1)

Z. Yuan and H. Jiang, “A calibration-free, one-step method for quantitative photoacoustic tomography,” Med. Phys. 39(11), 6895–6899 (2012).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

J. M. Agosti and S. J. Goldie, “Introducing HPV vaccine in developing countries--key challenges and issues,” N. Engl. J. Med. 356(19), 1908–1910 (2007).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[Crossref] [PubMed]

Neoplasia (1)

V. T. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative Physiology of the Precancerous Cervix In Vivo through Optical Spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, and R. Richards-Kortum, “Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia,” Photochem. Photobiol. 73(6), 636–641 (2001).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42(10), 1971–1979 (1997).
[Crossref] [PubMed]

Radiology (1)

C. Kim, K. H. Song, F. Gao, and L. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255(2), 442–450 (2010).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo Imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Ultrasound Obstet. Gynecol. (1)

J. Gallwas, L. Turk, K. Friese, and C. Dannecker, “Optical coherence tomography as a non-invasive imaging technique for preinvasive and invasive neoplasia of the uterine cervix,” Ultrasound Obstet. Gynecol. 36(5), 624–629 (2010).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

C. Murali Krishna, N. B. Prathima, R. Malini, B. M. Vadhiraja, R. A. Bhatt, D. J. Fernandes, P. Kushtagi, M. S. Vidyasagar, and V. B. Kartha, “Raman spectroscopy studies for diagnosis of cancers in human Uterine cervix,” Vib. Spectrosc. 41(1), 136–141 (2006).
[Crossref]

Other (6)

D. Kerrigan, “Identifying Molecular Culprits of Cervical Cancer Progression,” http://home.ccr.cancer.gov/inthejournals/archives/Gius_03.asp .

A. R. John, Athematical Statistics and Data Analysis (Cengage Learning, 2006).

J. L. Myers and A. D. Well, Research design and statistical analysis (Routledge, 2003).

J. Wei, “Pathology of Cervical Carcinoma,” http://www.glowm. com/section_view/heading/Pathology%20of%20Cervical%20Carcinoma/item/230 .

J. W. Sellors and R. Sankaranarayanan, “Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginner's Manual,” http://screening.iarc.fr/colpochap.php?chap=2 .

D. Ferris, T. Cox, D. Connor, and V. Wright, Modern Colposcopy Textbook and Atlas (Lippincott Williams & Wilkins, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Development of cervical cancer. CIN presents cervical intraepithelial neoplasia; and ICC presents invasive cervical cancer. Reprinted with permission from The National Cancer Institute of United States, D Kerrigan and colleagues [21]. Copyright 2008 NCI.

Fig. 2
Fig. 2

Schematic of photoacoustic imaging system

Fig. 3
Fig. 3

Comparison between the normal cervical tissue and tissue lesion for different stages. From top to bottom are the pathological images for the normal cervical tissue (first row) and tissue lesion (second row), the photo image (third row) and corresponding DMAP images (fourth row) of representative experiments respectively. Margins of the normal tissue (green) and cervical lesion (red) are indicated in the photo and DAMP images. The scale bar for the histological images represents 0.1 mm , and that for the photo and DMAP images is 1 mm .

Fig. 4
Fig. 4

Normalized mean optical absorption for all the samples.

Tables (2)

Tables Icon

Table 1 Cervical cancer staging definition and experimental design.

Tables Icon

Table 2 Statistical results for different stages of cervical lesion

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t= x ¯ 1 x ¯ 2 ( s x 1 2 + s x 2 2 )/n
x= {x(1),x(2),,x(N)} T y= {y(1),y(2),,y(N)} T
r x (i)=1+ a i + 1 b i k=0 b i 1 k i=1,2,...,N
SROCC= i=1 N ( r x (i) r ¯ x )( r y (i) r ¯ y ) i=1 N ( r x (i) r ¯ x ) 2 i=1 N ( r y (i) r ¯ y ) 2

Metrics