Abstract

A popular alternative of preparing multilayer or microfluidic chip based phantoms could have helped to simulate the subsurface vascular network, but brought inevitable problems. In this work, we describe the preparation method of a single layer skin equivalent tissue phantom containing interior vessel channels, which mimick the superficial microvascular structure. The fabrication method does not disturb the optical properties of the turbiding matrix material. The diameter of the channels reaches a value of 50 μm. The size, as well as the geometry of the generated vessel structures are investigated by using the SD-OCT system. Our preliminary results confirm that fabrication of such a phantom is achievable and reproducible. Prospectively, this phantom is used to calibrate the optical angiographic imaging approaches.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993)
    [CrossRef]
  2. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006)
    [CrossRef] [PubMed]
  3. M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
    [CrossRef]
  4. D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
    [CrossRef]
  5. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C. E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express3(6), 1381–1398 (2012)
    [CrossRef] [PubMed]
  6. R. J. Cooper, R. Eames, J. Brunker, L. C. Enfield, A. P. Gibson, and J. C. Hebden, “A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG,” Biomed. Opt. Express1(2), 425–430 (2010)
    [CrossRef]
  7. A. V. Mudaliar, Development of a Phantom Tissue for Blood Perfusion Measurement and Noninvasive Blood Perfusion Estimation in Living Tissue (Virginia Polytechnic Institute and State University, 2007)
  8. C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
    [CrossRef] [PubMed]
  9. W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
    [CrossRef] [PubMed]
  10. A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
    [CrossRef]
  11. R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
    [CrossRef]
  12. A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)
  13. A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
    [CrossRef]
  14. V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
    [CrossRef]
  15. J. T. Wang, J. C. James, C. P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett.39(10), 3010–3013 (2014)
    [CrossRef] [PubMed]
  16. L. Luu, P. A. Roman, S. A. Mathews, and J. C. Ramella-Roman, “Microfluidics based phantoms of superficial vascular network,” Biomed. Opt. Express3(6), 1350–1364 (2012)
    [CrossRef] [PubMed]
  17. N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2002)
  18. A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
    [CrossRef]
  19. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
    [CrossRef] [PubMed]
  20. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
    [CrossRef] [PubMed]
  21. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding–doubling method,” Appl. Opt.32(4), 559–568 (1993)
    [PubMed]
  22. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE pressBellingham, 2012)
  23. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O ’ Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express3(5), 966–971 (2012)
    [PubMed]

2014

2012

2011

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
[CrossRef]

2010

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

R. J. Cooper, R. Eames, J. Brunker, L. C. Enfield, A. P. Gibson, and J. C. Hebden, “A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG,” Biomed. Opt. Express1(2), 425–430 (2010)
[CrossRef]

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

2006

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006)
[CrossRef] [PubMed]

2001

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

1997

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

1996

D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
[CrossRef]

1993

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993)
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding–doubling method,” Appl. Opt.32(4), 559–568 (1993)
[PubMed]

1992

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
[CrossRef] [PubMed]

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

Astrahan, M.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

Ayers, F.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Bashkatov, A. N.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
[CrossRef]

Bisaillon, C. E.

Brunker, J.

Bykov, A. V.

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Bykovand, A. V.

A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)

Campbell, G.

Cerussi, A. E.

Cespedes, E. I.

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

Chen, Y.

Cho, S.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Colombo, A.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Cooper, R. J.

Curatolo, A.

Dabrowski, W.

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

De Korte, C. L.

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

Delpy, D. T.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993)
[CrossRef]

Dunmore-Buyze, J.

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

Durkin, A. F.

Durkin, A. J.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Eames, R.

Enfield, L. C.

Eum, H.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Farina, B.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
[CrossRef] [PubMed]

Fenster, A.

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

Firbank, M.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993)
[CrossRef]

Genina, E. A.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
[CrossRef]

Gibson, A. P.

Haghany, H.

Hebden, J. C.

Hill, B.

Holdsworth, D. W.

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

James, J. C.

Keene, S.

Kendrew, A. U.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Kennedy, B. F.

Kennedy, K. M.

Kim, D.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Kim, M.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Kinnunen, M.

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Kochubey, V. I.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Kondru, C.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Ku, Y.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Lamouche, G.

Leproux, A.

Liang, C. P.

Lualdi, M.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Luu, L.

Lychagov, V. V.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
[CrossRef] [PubMed]

Mantulin, W. M.

Marchesini, R.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Mathews, S. A.

Miller, D. R.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Mudaliar, A. V.

A. V. Mudaliar, Development of a Phantom Tissue for Blood Perfusion Measurement and Noninvasive Blood Perfusion Estimation in Living Tissue (Virginia Polytechnic Institute and State University, 2007)

Myllylä, R.

A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Nguyen, N. T.

N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2002)

Norder, B.

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

O ’ Sullivan, T. D.

Oh, J.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006)
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
[CrossRef] [PubMed]

Pazos, V.

Petrovich, Z.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

Pfefer, T. J.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006)
[CrossRef] [PubMed]

Popov, A. P.

A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Portnov, S. A.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Poston, R. S.

D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
[CrossRef]

Prahl, S. A.

D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
[CrossRef]

S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding–doubling method,” Appl. Opt.32(4), 559–568 (1993)
[PubMed]

Priezzhev, A. V.

A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Prykäri, T.

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

Quang, T.

Ramella-Roman, J. C.

Rankin, R. N.

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

Roblyer, D.

Roman, P. A.

Roystonand, D. D.

D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
[CrossRef]

Saager, R. B.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Sampson, D. D.

Shim, B.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Shrivastava, P. N.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

Sry, K.

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

Surowiec, A.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

te Nijenhuis, K.

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

Tomatis, S.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Tromberg, B. J.

Trunina, N. A.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
[CrossRef]

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE pressBellingham, 2012)

Van der Steen, A. F. W.

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

van Gemert, M. J. C.

Wang, J. T.

Warren, R.

Welch, A. J.

Wereley, S. T.

N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2002)

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
[CrossRef] [PubMed]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
[CrossRef] [PubMed]

Woolsey, N.

Yang, Y.

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Appl. Opt.

Biomed. Opt. Express

Int. J. Hyperther.

A. Surowiec, P. N. Shrivastava, M. Astrahan, and Z. Petrovich, “Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators,” Int. J. Hyperther.8(6), 795–807 (1992)
[CrossRef]

J. Biomed. Opt.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006)
[CrossRef] [PubMed]

D. D. Roystonand, R. S. Poston, and S. A. Prahl, “Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm,” J. Biomed. Opt.1(1), 110–116 (1996)
[CrossRef]

Journal of Innovative Optical Health Sciences

A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcutaneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences, 4(1), 9–38 (2011)
[CrossRef]

Laser. Surg. Med.

M. Lualdi, A. Colombo, B. Farina, S. Tomatis, and R. Marchesini, “A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine,” Laser. Surg. Med.39(3), 237–243 (2001)
[CrossRef]

Med. Phys.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19, 879 (1992)
[CrossRef] [PubMed]

W. Dabrowski, J. Dunmore-Buyze, R. N. Rankin, D. W. Holdsworth, and A. Fenster, “A real vessel phantom for imaging experimentation,” Med. Phys.24, 687 (1997)
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol.38(6), 847 (1993)
[CrossRef]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985 (1992)
[CrossRef] [PubMed]

Proc. SPIE

R. B. Saager, C. Kondru, A. U. Kendrew, K. Sry, F. Ayers, and A. J. Durkin, “Multilayer silicone phantoms for the evaluation of quantitative optical techniques in skin imaging,” Proc. SPIE7567, 756706 (2010)
[CrossRef]

A. V. Bykovand, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” Proc. SPIE8091, 80911R (2012)

A. V. Bykov, A. P. Popov, M. Kinnunen, T. Prykäri, A. V. Priezzhev, and R. Myllylä, “Skin phantoms with realistic vessel structure for OCT measurements,” Proc. SPIE7376, 73760F (2010)
[CrossRef]

V. V. Tuchin, A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Lychagov, S. A. Portnov, N. A. Trunina, D. R. Miller, S. Cho, B. Shim, M. Kim, J. Oh, H. Eum, Y. Ku, D. Kim, and Y. Yang, “Finger tissue model and blood perfused skin tissue phantom,” Proc. SPIE7898, 78980Z (2011)
[CrossRef]

Ultrasonic imaging

C. L. De Korte, E. I. Cespedes, A. F. W. Van der Steen, B. Norder, and K. te Nijenhuis, “Elastic and acoustic properties of vessel mimicking material for elasticity imaging,” Ultrasonic imaging19(2), 112–126 (1997)
[CrossRef] [PubMed]

Other

A. V. Mudaliar, Development of a Phantom Tissue for Blood Perfusion Measurement and Noninvasive Blood Perfusion Estimation in Living Tissue (Virginia Polytechnic Institute and State University, 2007)

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE pressBellingham, 2012)

N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluidics (Artech House, 2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the cylinder casting mold design for regulating 4 rows of vessel channels in the tissue phantom and (b) image of a finished casting mold with 4 rows of copper wires and 21 gauge cannulas inserted through the drilling holes

Fig. 2
Fig. 2

Picture of (a) a finished tissue phantom with 4 rows of vessel channels perpendicularly crossing over 2 mounting brackets and (b) a finished transparent tissue phantom with 2 rows of channels, they are included with india ink to highlight the hollow vessel channels against the matrix material

Fig. 3
Fig. 3

Comparison of (a) absorbance, (b) diffuse reflectance (c) diffuse transmittance and (d) total transmittance spectra through a phantom slab before and after etching in wavelength range from 400 to 1000 nm and their standard derivation.

Fig. 4
Fig. 4

(a) OM graphic of a generated vessel channel dyed with india ink in a transparent tissue phantom (b) OCT B-scan image of the cross section passing along a vessel channel (c) OCT B-scan image of the cross section passing along a mounting bracket across the the vessel channels (d) OCT volume view of the segmentated vessel structures, including vessel channels and mounting brackets

Fig. 5
Fig. 5

(a) OCT image of the cross section across over 4 vessel channel, showing that they are not located on the same latitude of around 160 μm to the surface (b) OCT top view of vessel channels in tissue phantom : vessel channels bend in tangential direction along the structure due to the inner stress induced during solidification

Fig. 6
Fig. 6

Origin OCT B-Scan image of the cross section of (a) a typically inhomogeneous tissue phantom (b) homogenous tissue phantom, subfigures (c) and (d) demonstrate the segmentated scattering clusters corresponding to (a) and (b)

Tables (3)

Tables Icon

Table 1 Attenuation in the values of Tt, Td, Ab and Rd with regarding to different content of titanium oxide in 100 mL of polyurethane

Tables Icon

Table 2 Optical properties of the ex-vivo caucasian skin tissues and tissue phantom calculated by inverse adding doubling with a single integrating sphere

Tables Icon

Table 3 Estimated and real values of diameter of the eroded copper wires and generated vessel channels in a transparent phantom slab

Metrics