Abstract

Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).
  2. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007).
    [CrossRef] [PubMed]
  3. A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
    [CrossRef] [PubMed]
  4. K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
    [CrossRef] [PubMed]
  5. L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
    [CrossRef] [PubMed]
  6. K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg.105(6), S31–S36 (2007).
    [CrossRef] [PubMed]
  7. N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
    [CrossRef] [PubMed]
  8. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
    [CrossRef] [PubMed]
  9. K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
    [CrossRef] [PubMed]
  10. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express16(26), 21434–21445 (2008).
    [CrossRef] [PubMed]
  11. A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011).
    [CrossRef] [PubMed]
  12. A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
    [CrossRef] [PubMed]
  13. N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
    [CrossRef] [PubMed]
  14. V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
    [CrossRef] [PubMed]
  15. W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
    [CrossRef] [PubMed]
  16. G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
    [CrossRef] [PubMed]
  17. B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
    [CrossRef] [PubMed]
  18. E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
    [CrossRef] [PubMed]
  19. C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
    [CrossRef] [PubMed]
  20. A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999).
    [CrossRef] [PubMed]
  21. M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
    [CrossRef] [PubMed]
  22. A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol.124, 328–340 (1938).
  23. H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
    [CrossRef] [PubMed]
  24. S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
    [CrossRef] [PubMed]
  25. V. G. Macefield, “Sympathetic microneurography,” in Autonomic Nervous System, R. M. Buijs and D. F. Swaab, eds., (Elsevier B.V., 2013), pp. 353–364.
  26. R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
    [CrossRef] [PubMed]
  27. Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
    [CrossRef] [PubMed]
  28. G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
    [CrossRef] [PubMed]

2014

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

2013

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

2012

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
[CrossRef] [PubMed]

2011

2010

E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

2008

W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express16(26), 21434–21445 (2008).
[CrossRef] [PubMed]

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

2007

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg.105(6), S31–S36 (2007).
[CrossRef] [PubMed]

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007).
[CrossRef] [PubMed]

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
[CrossRef] [PubMed]

2006

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

2005

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

2004

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
[CrossRef] [PubMed]

1999

A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999).
[CrossRef] [PubMed]

1998

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

1997

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

1996

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
[CrossRef] [PubMed]

1992

L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
[CrossRef] [PubMed]

1990

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
[CrossRef] [PubMed]

1989

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

1956

H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
[CrossRef] [PubMed]

1938

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol.124, 328–340 (1938).

1937

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007).
[CrossRef] [PubMed]

Anand, S. S.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

Babchenko, A.

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

Berntson, G. G.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Bigger, J. T.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Brown, R.

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

Chon, K. H.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Chowienczyk, P. J.

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

Cohen, B. M.

H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
[CrossRef] [PubMed]

Cui, W. J.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
[CrossRef] [PubMed]

Deepak, K. K.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

Eckberg, D. L.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Feinberg, A. W.

H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
[CrossRef] [PubMed]

Giniatullin, R.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Gorbach, A. M.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Granquist-Fraser, D.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Gröhn, O.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

Grossman, P.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Harness, J. B.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

Henderson, L. A.

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

Hertzman, A. B.

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol.124, 328–340 (1938).

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).

Hodges, G. J.

G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
[CrossRef] [PubMed]

Humphreys, K.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
[CrossRef] [PubMed]

Irving, G.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

James, C.

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

Jaryal, A. K.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

Johansson, A.

A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999).
[CrossRef] [PubMed]

Jonathan, E.

E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

Kamal, A. A. R.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

Kamijo, Y.-I.

Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
[CrossRef] [PubMed]

Kamshilin, A. A.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011).
[CrossRef] [PubMed]

Karjalainen, P. A.

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Kaufmann, P. G.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Khanokh, B.

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

Landau, D.

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

Lax, H.

H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
[CrossRef] [PubMed]

Leahy, M.

E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

Lee, B. Y.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
[CrossRef] [PubMed]

Lee, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Lee, K.

Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
[CrossRef] [PubMed]

Lindberg, L.-G.

L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
[CrossRef] [PubMed]

Lipponen, J. A.

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Macefield, V. G.

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

Mack, G. W.

Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
[CrossRef] [PubMed]

Malik, M.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Markham, C.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
[CrossRef] [PubMed]

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Mearns, A. J.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

Mendelson, Y.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Meyer, J.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Miike, H.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
[CrossRef] [PubMed]

Millasseau, S. C.

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

Miridonov, S. V.

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011).
[CrossRef] [PubMed]

Nagaraja, H. N.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Nakajima, K.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
[CrossRef] [PubMed]

Närhi, M.

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Nelson, J. S.

Nippolainen, E.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011).
[CrossRef] [PubMed]

Nitzan, M.

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

Öberg, P. Å.

A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999).
[CrossRef] [PubMed]

L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
[CrossRef] [PubMed]

Ostrander, L. E.

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
[CrossRef] [PubMed]

Porges, S. W.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Ritter, J. M.

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

Saarenheimo, R.

Santhosh, J.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

Saul, J. P.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Saxton, J. M.

G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
[CrossRef] [PubMed]

Scully, C. G.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

Selvaraj, N.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

Shatillo, A.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

Shelley, K. H.

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg.105(6), S31–S36 (2007).
[CrossRef] [PubMed]

Slovik, Y.

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

Spealman, C. R.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).

Stone, P. H.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Svaasand, L. O.

Takazawa, K.

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

Tamura, T.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
[CrossRef] [PubMed]

Teplov, V.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

A. A. Kamshilin, S. V. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express2(4), 996–1006 (2011).
[CrossRef] [PubMed]

Tew, G. A.

G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
[CrossRef] [PubMed]

Ugnell, H.

L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
[CrossRef] [PubMed]

van der Molen, M. W.

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Verkruysse, W.

Ward, T.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
[CrossRef] [PubMed]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Zaproudina, N.

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Am. J. Physiol.

A. B. Hertzman and C. R. Spealman, “Observations on the finger volume pulse recorded photoelectrically,” Am. J. Physiol.119, 334–335 (1937).

A. B. Hertzman, “The blood supply of various skin areas as estimated by the photoelectric plethysmograph,” Am. J. Physiol.124, 328–340 (1938).

Anesth. Analg.

K. H. Shelley, “Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate,” Anesth. Analg.105(6), S31–S36 (2007).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng.33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Biomed. Opt. Express

Comput. Methods Programs Biomed.

A. A. R. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, “Skin photoplethysmography - a review,” Comput. Methods Programs Biomed.28(4), 257–269 (1989).
[CrossRef] [PubMed]

Front Physiol

R. Brown, C. James, L. A. Henderson, and V. G. Macefield, “Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images,” Front Physiol3, 394 (2012).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

C. G. Scully, J. Lee, J. Meyer, A. M. Gorbach, D. Granquist-Fraser, Y. Mendelson, and K. H. Chon, “Physiological parameter monitoring from optical recordings with a mobile phone,” IEEE Trans. Biomed. Eng.59(2), 303–306 (2012).
[CrossRef] [PubMed]

W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wavelength,” IEEE Trans. Biomed. Eng.37(6), 632–639 (1990).
[CrossRef] [PubMed]

J. Appl. Physiol.

Y.-I. Kamijo, K. Lee, and G. W. Mack, “Active cutaneous vasodilation in resting humans during mild heat stress,” J. Appl. Physiol.98(3), 829–837 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt.

V. Teplov, A. Shatillo, E. Nippolainen, O. Gröhn, R. Giniatullin, and A. A. Kamshilin, “Fast vascular component of cortical spreading depression revealed in rats by blood pulsation imaging,” J. Biomed. Opt.19(4), 046011 (2014).
[CrossRef] [PubMed]

J. Chronic Dis.

H. Lax, A. W. Feinberg, and B. M. Cohen, “Studies of the arterial pulse wave. I. The normal pulse wave and its modification in the presence of human arteriosclerosis,” J. Chronic Dis.3(6), 618–631 (1956).
[CrossRef] [PubMed]

J. Hypertens.

S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, “Contour analysis of the photoplethysmographic pulse measured at the finger,” J. Hypertens.24(8), 1449–1456 (2006).
[CrossRef] [PubMed]

J. Med. Eng. Technol.

N. Selvaraj, A. K. Jaryal, J. Santhosh, K. K. Deepak, and S. S. Anand, “Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography,” J. Med. Eng. Technol.32(6), 479–484 (2008).
[CrossRef] [PubMed]

J. Nutr. Health Aging

G. A. Tew, J. M. Saxton, and G. J. Hodges, “Exercise training and the control of skin blood flow in older adults,” J. Nutr. Health Aging16(3), 237–241 (2012).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput.

A. Johansson and P. Å. Öberg, “Estimation of respiratory volumes from the photoplethysmographic signal. Part I: experimental results,” Med. Biol. Eng. Comput.37(1), 42–47 (1999).
[CrossRef] [PubMed]

B. Khanokh, Y. Slovik, D. Landau, and M. Nitzan, “Sympathetically induced spontaneous fluctuations of the photoplethysmographic signal,” Med. Biol. Eng. Comput.42(1), 80–85 (2004).
[CrossRef] [PubMed]

L.-G. Lindberg, H. Ugnell, and P. Å. Öberg, “Monitoring of respiratory and heart rates using a fibre-optic sensor,” Med. Biol. Eng. Comput.30(5), 533–537 (1992).
[CrossRef] [PubMed]

Med. Eng. Phys.

K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique,” Med. Eng. Phys.18(5), 365–372 (1996).
[CrossRef] [PubMed]

Opt. Express

Physiol. Meas.

E. Jonathan and M. Leahy, “Investigating a smartphone imaging unit for photoplethysmography,” Physiol. Meas.31(11), N79–N83 (2010).
[CrossRef] [PubMed]

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas.28(3), R1–R39 (2007).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and D. Landau, “The variability of the photoplethysmographic signal - a potential method for the evaluation of the autonomic nervous system,” Physiol. Meas.19(1), 93–102 (1998).
[CrossRef] [PubMed]

PLoS ONE

A. A. Kamshilin, V. Teplov, E. Nippolainen, S. V. Miridonov, and R. Giniatullin, “Variability of microcirculation detected by blood pulsation imaging,” PLoS ONE8(2), e57117 (2013).
[CrossRef] [PubMed]

N. Zaproudina, V. Teplov, E. Nippolainen, J. A. Lipponen, A. A. Kamshilin, M. Närhi, P. A. Karjalainen, and R. Giniatullin, “Asynchronicity of facial blood perfusion in migraine,” PLoS ONE8(12), e80189 (2013).
[CrossRef] [PubMed]

Psychophysiology

G. G. Berntson, J. T. Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann, M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and M. W. van der Molen, “Heart rate variability: Origins, methods, and interpretive caveats,” Psychophysiology34(6), 623–648 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum.78(4), 044304 (2007).
[CrossRef] [PubMed]

Other

V. G. Macefield, “Sympathetic microneurography,” in Autonomic Nervous System, R. M. Buijs and D. F. Swaab, eds., (Elsevier B.V., 2013), pp. 353–364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of the experimental setup (a) and an example of the recorded frame (b) with the area of the study marked by dashed square with indication of anatomical placement of the arteries marked by red dashed lines.

Fig. 2
Fig. 2

BPA (a) and BPP (b) maps for randomly selected cardiac cycle obtained by preliminary BPI calculated with the use of the sinusoidal reference function formed from the large region situated in the center of the frame marked by the dotted lines. Small white squares show regions of interest (ROI) for estimation of PPG waveforms.

Fig. 3
Fig. 3

PPG waveforms observed in different regions with size of 10 × 10 pixels: (a) ROI-1, traditional slow type waveform; (b) ROI-2, atypical fast type; and (c) ROI-3, intermediate type. Position of ROIs in subject’s palm is shown in Fig. 2. ROI-1 and ROI-2 are situated in areas with asynchronous blood supply.

Fig. 4
Fig. 4

Formation of the sinusoidal reference function. Row PPG waveforms are shown by blue lines while the reference functions are shown in red for D-type algorithm (a) when the cardiac cycle is defined by the minima of PPG signal, and for S-type (b) when the cycle is defined by maxima of PPG. The amplitude of the reference function may vary from one cycle to another.

Fig. 5
Fig. 5

Formation of the triangular reference function. PPG waveforms are shown by blue lines while the reference functions are in red with their extremes shown by blue squares for the D-type algorithm (a), and for the S-type (b).

Fig. 6
Fig. 6

An example of the pixel-value modulation during j-cardiac cycle (blue line) with the series of triangular functions R Dtri j,m (t) (red dotted line) having variable position of the peaks at the moments t m j shown by blue squares.

Fig. 7
Fig. 7

Raw camera image overlaid with blood pulsation maps: (a) 2D distribution of the relative phase of blood pulsations (BPP map); and (b) distribution of blood pulsations amplitude (BPA map). The color scales on the right are in degrees and in per cents for BPP and BPA maps, respectively.

Fig. 8
Fig. 8

Statistical diagram of the partial area averaged in all the subjects (left) and its distribution in the subjects of different age (right).

Fig. 9
Fig. 9

An example of BPA (a)-(d) and BPP (e)-(h) maps for a random cardiac cycle calculated by BPI algorithm with sinusoidal and triangular reference functions of D- and S-types which were defined by the parameters derived from the PPG waveform measured in ROI-1 (marked by the black square).

Fig. 10
Fig. 10

BPP maps (a), (b) calculated for two different subjects, and respective raw PPG signals (c), (d) measured within ROIs 1-3 shown in BPP maps by white squares with respective numbering.

Fig. 11
Fig. 11

Comparison of different modes of the relative phase calculations. Example of BPP maps of two subjects, (a) and (b) calculated for random cardiac cycles in which the position of the reference area (ROI-1) and regions for comparison (ROIs 2-8) are shown by squares. Comparative diagrams (c) and (e) for phase estimations by PPG waveforms (green) and BPI algorithm with sinusoidal (blue) and triangle (red) reference functions in different ROI for subjects (a) and (b), respectively. Time traces of PPG waveforms (d) measured in ROI-1 and ROI-2 for subject (a), and time traces (f) measured in ROI-1 and ROI-2 for subject (b).

Fig. 12
Fig. 12

Comparison of BPA calculations with different reference functions in ROI-2 (a) and in ROI-3 (b). Green bars show the amplitude estimations from the PPG waveforms, blue bars are calculated by BPI algorithm with sinusoidal reference functions, and red bars are calculated with triangular reference functions. The bars indicate the pulsation amplitude averaged over 60 cardiac cycles with the standard deviation shown by vertical whiskers. Time traces of the row PPG waveforms in ROI-2 (c) and ROI-3 (d) are shown by red lines together with the PPG waveforms measured in ROI-1 (blue line).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R Dsin j ( t )= B Ssin j [ cos( 2πt / T C j )isin( 2πt / T C j ) ].
B Dsin j = A D j | t [ cos( 2πt / T C j )isin( 2πt / T C j ) ] P j (t) | .
R Ssin k ( t )= B Ssin k [ cos( 2πt / T C k )+isin( 2πt / T C k ) ],
B Ssin k = A S k | t [ cos( 2πt / T C )+isin( 2πt / T C ) ] P k (t) | .
F tri j ( t )={ 1, t= t 0 j t t m j , t 0 j <t t m j t C j t t C j t m j , t m j <t< t C j 1, t= t C j }.
R Dtri j ( t )= B Dtri j F tri j ( t ).
B Dtri j = A D j t P j ( t ) G Dtri k ( t ) ,
R Stri k ( t )= B Stri k F tri k ( t ),
B Stri k = A S k t P k ( t ) H Stri k ( t ) .
I( x,y,t )= I RAW ( x,y,t ) I DC ( x,y ) 1.
S Dsin j ( x,y )= t I j ( x,y,t ) R Dsin j ( t ) ,
S Ssin k ( x,y )= t I k ( x,y,t ) R Ssin k ( t ) .
C Dtri j,m ( x,y )= t I j ( x,y,t ) R Dtri j,m ( t ) .

Metrics