Abstract

In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Zatsiorsky and B. I. Prilutsky, Biomechanics of Skeletal Muscles (Human Kinetics, 2012).
  2. H. Maas and T. G. Sandercock, “Force transmission between synergistic skeletal muscles through connective tissue linkages,” J. Biomed. Biotechnol.2010, 575672 (2010).
    [CrossRef] [PubMed]
  3. G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke,” J. Physiol.573(3), 627–643 (2006).
    [CrossRef] [PubMed]
  4. J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
    [CrossRef] [PubMed]
  5. C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
    [CrossRef] [PubMed]
  6. K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
    [CrossRef] [PubMed]
  7. E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
    [CrossRef] [PubMed]
  8. M. J. Spencer and J. G. Tidball, “Do immune cells promote the pathology of dystrophin-deficient myopathies?” Neuromuscul. Disord.11(6-7), 556–564 (2001).
    [CrossRef] [PubMed]
  9. T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
    [CrossRef] [PubMed]
  10. M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
    [CrossRef] [PubMed]
  11. K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
    [CrossRef] [PubMed]
  12. E. E. Drakonaki and G. M. Allen, “Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy,” Skeletal Radiol.39(4), 391–396 (2010).
    [CrossRef] [PubMed]
  13. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
    [CrossRef] [PubMed]
  14. F. Cornelio and I. Dones, “Muscle fiber degeneration and necrosis in muscular dystrophy and other muscle diseases: cytochemical and immunocytochemical data,” Ann. Neurol.16(6), 694–701 (1984).
    [CrossRef] [PubMed]
  15. G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
    [CrossRef] [PubMed]
  16. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  17. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
    [CrossRef]
  18. B. F. Kennedy, K. M. Kennedy, A. L. Oldenburg, S. G. Adie, S. A. Boppart, and D. D. Sampson, “Optical coherence elastography,” in Optical Coherence Tomography: Technology and Applications, J. G. Fujimoto, and W. Drexler, eds. (Springer, to be published).
  19. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
    [CrossRef] [PubMed]
  20. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
    [CrossRef] [PubMed]
  21. A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using full field OCT,” Biomed. Opt. Express4(10), 2138–2149 (2013).
    [CrossRef] [PubMed]
  22. V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013).
    [CrossRef] [PubMed]
  23. K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
    [CrossRef] [PubMed]
  24. V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
    [CrossRef] [PubMed]
  25. B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
    [CrossRef] [PubMed]
  26. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett.39(1), 41–44 (2014).
    [CrossRef] [PubMed]
  27. K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
    [CrossRef] [PubMed]
  28. N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
    [CrossRef] [PubMed]
  29. G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
    [CrossRef] [PubMed]
  30. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  31. L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
    [CrossRef] [PubMed]
  32. C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
    [CrossRef] [PubMed]
  33. G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
    [CrossRef] [PubMed]
  34. S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express5(7), 1980–1992 (2014).
    [CrossRef] [PubMed]
  35. M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
    [CrossRef] [PubMed]
  36. J. J. Pasquesi, S. C. Schlachter, M. D. Boppart, E. Chaney, S. J. Kaufman, and S. A. Boppart, “In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography,” Opt. Express14(4), 1547–1556 (2006).
    [PubMed]
  37. B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
    [CrossRef] [PubMed]
  38. X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
    [CrossRef] [PubMed]
  39. X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
    [CrossRef] [PubMed]
  40. B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
    [CrossRef] [PubMed]
  41. K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
    [CrossRef] [PubMed]
  42. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  43. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
    [CrossRef]
  44. B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
    [CrossRef] [PubMed]
  45. H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
    [CrossRef] [PubMed]
  46. L. F. B. Torres and L. W. Duchen, “The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates,” Brain110(2), 269–299 (1987).
    [CrossRef] [PubMed]
  47. T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997).
    [CrossRef] [PubMed]
  48. A. R. Gillies and R. L. Lieber, “Structure and function of the skeletal muscle extracellular matrix,” Muscle Nerve44(3), 318–331 (2011).
    [PubMed]
  49. M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
    [CrossRef] [PubMed]
  50. K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
    [CrossRef] [PubMed]
  51. K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
    [CrossRef] [PubMed]
  52. B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
    [PubMed]
  53. K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
    [CrossRef] [PubMed]
  54. K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
    [CrossRef] [PubMed]

2014

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
[CrossRef]

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett.39(1), 41–44 (2014).
[CrossRef] [PubMed]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express5(7), 1980–1992 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

2013

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using full field OCT,” Biomed. Opt. Express4(10), 2138–2149 (2013).
[CrossRef] [PubMed]

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

2012

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

2011

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

A. R. Gillies and R. L. Lieber, “Structure and function of the skeletal muscle extracellular matrix,” Muscle Nerve44(3), 318–331 (2011).
[PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
[CrossRef] [PubMed]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
[CrossRef] [PubMed]

C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
[CrossRef] [PubMed]

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

2010

E. E. Drakonaki and G. M. Allen, “Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy,” Skeletal Radiol.39(4), 391–396 (2010).
[CrossRef] [PubMed]

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

H. Maas and T. G. Sandercock, “Force transmission between synergistic skeletal muscles through connective tissue linkages,” J. Biomed. Biotechnol.2010, 575672 (2010).
[CrossRef] [PubMed]

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
[CrossRef] [PubMed]

2009

2008

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

2007

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

2006

2005

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

2004

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

2001

M. J. Spencer and J. G. Tidball, “Do immune cells promote the pathology of dystrophin-deficient myopathies?” Neuromuscul. Disord.11(6-7), 556–564 (2001).
[CrossRef] [PubMed]

1998

1997

T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997).
[CrossRef] [PubMed]

1988

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

1987

L. F. B. Torres and L. W. Duchen, “The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates,” Brain110(2), 269–299 (1987).
[CrossRef] [PubMed]

1984

F. Cornelio and I. Dones, “Muscle fiber degeneration and necrosis in muscular dystrophy and other muscle diseases: cytochemical and immunocytochemical data,” Ann. Neurol.16(6), 694–701 (1984).
[CrossRef] [PubMed]

Adie, S. G.

Ahmad, A.

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013).
[CrossRef] [PubMed]

Allen, G. M.

E. E. Drakonaki and G. M. Allen, “Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy,” Skeletal Radiol.39(4), 391–396 (2010).
[CrossRef] [PubMed]

Arthur, P.

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Bakker, A. J.

K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
[CrossRef] [PubMed]

Bamber, J. C.

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

Barash, I.

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

Bauer, M.

Belfall, B.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Birnkrant, D. J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Bloch, R. J.

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

Boccara, A. C.

Boppart, M. D.

Boppart, S. A.

Bozec, L.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

Bulman, D. E.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Burghes, A. H. M.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Bush, M. B.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

Bushby, K.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Canato, M.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Case, L. E.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Chambers, H. G.

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

Chaney, E.

Chao, C. Y. L.

C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
[CrossRef] [PubMed]

Cheing, G. L. Y.

C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
[CrossRef] [PubMed]

Chen, R.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Chen, Z.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Cheng, X.

Chin, L.

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

Chou, L.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Clemens, P. R.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Constantin, C.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Cornelio, F.

F. Cornelio and I. Dones, “Muscle fiber degeneration and necrosis in muscular dystrophy and other muscle diseases: cytochemical and immunocytochemical data,” Ann. Neurol.16(6), 694–701 (1984).
[CrossRef] [PubMed]

Coulton, G. R.

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

Coutts, L. V.

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

Crecea, V.

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013).
[CrossRef] [PubMed]

Cripe, L.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Curatolo, A.

Dal Maschio, M.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

de Jong, N.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

De Luca, A.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Dones, I.

F. Cornelio and I. Dones, “Muscle fiber degeneration and necrosis in muscular dystrophy and other muscle diseases: cytochemical and immunocytochemical data,” Ann. Neurol.16(6), 694–701 (1984).
[CrossRef] [PubMed]

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
[CrossRef] [PubMed]

Dragostinoff, N.

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

Drakonaki, E. E.

E. E. Drakonaki and G. M. Allen, “Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy,” Skeletal Radiol.39(4), 391–396 (2010).
[CrossRef] [PubMed]

Duan, D.

C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
[CrossRef] [PubMed]

Duchen, L. W.

L. F. B. Torres and L. W. Duchen, “The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates,” Brain110(2), 269–299 (1987).
[CrossRef] [PubMed]

Edmond, M.

Es’haghian, S.

Faulkner, J. A.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Finkel, R.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Foran, J. R. H.

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

Ford, C.

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

García-Pelagio, K. P.

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

Gelikonov, G. V.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

Gelikonov, V. M.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

Gerstmann, D. K.

Gillies, A. R.

A. R. Gillies and R. L. Lieber, “Structure and function of the skeletal muscle extracellular matrix,” Muscle Nerve44(3), 318–331 (2011).
[PubMed]

González-Serratos, H.

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

Grange, R. W.

C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
[CrossRef] [PubMed]

Gröschl, M.

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

Grounds, M. D.

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Guan, G.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

Hakim, C. H.

C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
[CrossRef] [PubMed]

Harland, C. C.

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

Hillman, T. R.

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Hodges, R. S.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Hoh, J. F. Y.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Horton, M. A.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

Huang, Z.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

Karpati, G.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Kaufman, S. J.

Kaul, A.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Keatch, R. P.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

Kennedy, B. F.

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
[CrossRef]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
[CrossRef]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

Kinnett, K.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Kirk, R. W.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Klaizer, J.

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

Klamut, H. J.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Klyen, B. R.

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Koh, S. H.

Kostrominova, T. Y.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Latham, B.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

Leitgeb, R. A.

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

Li, C.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

Li, J.

Liang, X.

Lieber, R. L.

A. R. Gillies and R. L. Lieber, “Structure and function of the skeletal muscle extracellular matrix,” Muscle Nerve44(3), 318–331 (2011).
[PubMed]

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

Ling, Y.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

Liu, G.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Lopez, A. L.

Lorenser, D.

Lynch, G. S.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Maas, H.

H. Maas and T. G. Sandercock, “Force transmission between synergistic skeletal muscles through connective tissue linkages,” J. Biomed. Biotechnol.2010, 575672 (2010).
[CrossRef] [PubMed]

Malheiro, F. G.

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

Martin, J. F.

Mastik, F.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Matveev, L. A.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

Matveyev, A. L.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

McDonald, C.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

McLaughlin, R. A.

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

Megighian, A.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Mesquida, P.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

Michele, D. E.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Miller, N. R.

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

Morgan, J. E.

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

Morikawa, Y.

Munro, P. R. T.

Nagaraju, K.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Nahas, A.

O’Hara, K. E.

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

Offer, G. W.

G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke,” J. Physiol.573(3), 627–643 (2006).
[CrossRef] [PubMed]

Ophir, J.

T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997).
[CrossRef] [PubMed]

Ortega, A.

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

Palmer, M. L.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Pandya, S.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
[CrossRef] [PubMed]

Partridge, T. A.

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

Pasquesi, J. J.

Pinniger, G. J.

K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
[CrossRef] [PubMed]

G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke,” J. Physiol.573(3), 627–643 (2006).
[CrossRef] [PubMed]

Poysky, J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Qi, W.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Quirk, B. C.

Radley, H. G.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Radley-Crabb, H. G.

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

Raiteri, R.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Ramaswamy, K. S.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Ramsey, K. A.

K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
[CrossRef] [PubMed]

Ranatunga, K. W.

G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke,” J. Physiol.573(3), 627–643 (2006).
[CrossRef] [PubMed]

Ray, P. N.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Reggiani, C.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Renoux, A.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Rosenthal, N.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Roux, S.

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
[CrossRef] [PubMed]

Sampson, D. D.

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

K. M. Kennedy, S. Es’haghian, L. Chin, R. A. McLaughlin, D. D. Sampson, and B. F. Kennedy, “Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor,” Opt. Lett.39(10), 3014–3017 (2014).
[CrossRef] [PubMed]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
[CrossRef]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

K. M. Kennedy, B. F. Kennedy, R. A. McLaughlin, and D. D. Sampson, “Needle optical coherence elastography for tissue boundary detection,” Opt. Lett.37(12), 2310–2312 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

Sandercock, T. G.

H. Maas and T. G. Sandercock, “Force transmission between synergistic skeletal muscles through connective tissue linkages,” J. Biomed. Biotechnol.2010, 575672 (2010).
[CrossRef] [PubMed]

Saunders, C. M.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

Sbrana, F.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Schlachter, S. C.

Schmetterer, L.

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

Schmitt, J. M.

Schmoll, T.

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

Scolaro, L.

Shapiro, F.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Shavlakadze, T.

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Simpson, M. C.

Sloper, J. C.

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

Spencer, M. J.

M. J. Spencer and J. G. Tidball, “Do immune cells promote the pathology of dystrophin-deficient myopathies?” Neuromuscul. Disord.11(6-7), 556–564 (2001).
[CrossRef] [PubMed]

Steinman, S.

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

Talbot, J.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Tao, G.

Terrill, J.

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Tidball, J. G.

M. J. Spencer and J. G. Tidball, “Do immune cells promote the pathology of dystrophin-deficient myopathies?” Neuromuscul. Disord.11(6-7), 556–564 (2001).
[CrossRef] [PubMed]

Tien, A.

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

Tomezsko, J.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Tonkin, J.

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Torres, L. F. B.

L. F. B. Torres and L. W. Duchen, “The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates,” Brain110(2), 269–299 (1987).
[CrossRef] [PubMed]

van der Meulen, J. H.

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Varghese, T.

T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997).
[CrossRef] [PubMed]

Vass, C.

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

Vassanelli, S.

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

Vorstius, J. B.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

Wang, R. K.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Wang, S.

Wenger, M. P. E.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

Werkmeister, R. M.

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

White, J.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Worton, R. G.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Yang, X.

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

Yang, Y.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

Zaitsev, V. Y.

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

Zhang, J.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Zheng, Y.-P.

C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
[CrossRef] [PubMed]

Zhou, Q.

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

Zubrzycka-Gaarn, E. E.

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Ann. Neurol.

F. Cornelio and I. Dones, “Muscle fiber degeneration and necrosis in muscular dystrophy and other muscle diseases: cytochemical and immunocytochemical data,” Ann. Neurol.16(6), 694–701 (1984).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Biomed. Opt. Express

B. F. Kennedy, S. H. Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, “Strain estimation in phase-sensitive optical coherence elastography,” Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

X. Yang, D. Lorenser, R. A. McLaughlin, R. W. Kirk, M. Edmond, M. C. Simpson, M. D. Grounds, and D. D. Sampson, “Imaging deep skeletal muscle structure using a high-sensitivity ultrathin side-viewing optical coherence tomography needle probe,” Biomed. Opt. Express5(1), 136–148 (2014).
[CrossRef] [PubMed]

B. R. Klyen, L. Scolaro, T. Shavlakadze, M. D. Grounds, and D. D. Sampson, “Optical coherence tomography can assess skeletal muscle tissue from mouse models of muscular dystrophy by parametric imaging of the attenuation coefficient,” Biomed. Opt. Express5(4), 1217–1232 (2014).
[CrossRef] [PubMed]

A. Nahas, M. Bauer, S. Roux, and A. C. Boccara, “3D static elastography at the micrometer scale using full field OCT,” Biomed. Opt. Express4(10), 2138–2149 (2013).
[CrossRef] [PubMed]

B. F. Kennedy, R. A. McLaughlin, K. M. Kennedy, L. Chin, A. Curatolo, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure,” Biomed. Opt. Express5(7), 2113–2124 (2014).
[CrossRef] [PubMed]

S. Wang, A. L. Lopez, Y. Morikawa, G. Tao, J. Li, I. V. Larina, J. F. Martin, and K. V. Larin, “Noncontact quantitative biomechanical characterization of cardiac muscle using shear wave imaging optical coherence tomography,” Biomed. Opt. Express5(7), 1980–1992 (2014).
[CrossRef] [PubMed]

Biophys. J.

M. P. E. Wenger, L. Bozec, M. A. Horton, and P. Mesquida, “Mechanical properties of collagen fibrils,” Biophys. J.93(4), 1255–1263 (2007).
[CrossRef] [PubMed]

Brain

L. F. B. Torres and L. W. Duchen, “The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates,” Brain110(2), 269–299 (1987).
[CrossRef] [PubMed]

Dev. Med. Child Neurol.

J. R. H. Foran, S. Steinman, I. Barash, H. G. Chambers, and R. L. Lieber, “Structural and mechanical alterations in spastic skeletal muscle,” Dev. Med. Child Neurol.47(10), 713–717 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A review of optical coherence elastography: fundamentals, techniques and prospects,” IEEE J. Sel. Top. Quantum Electron.20(2), 7101217 (2014).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: the strain filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(1), 164–172 (1997).
[CrossRef] [PubMed]

J. Appl. Physiol.

X. Yang, L. Chin, B. R. Klyen, T. Shavlakadze, R. A. McLaughlin, M. D. Grounds, and D. D. Sampson, “Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography,” J. Appl. Physiol.115(9), 1393–1401 (2013).
[CrossRef] [PubMed]

C. H. Hakim, R. W. Grange, and D. Duan, “The passive mechanical properties of the extensor digitorum longus muscle are compromised in 2- to 20-mo-old mdx mice,” J. Appl. Physiol.110(6), 1656–1663 (2011).
[CrossRef] [PubMed]

J. Biomed. Biotechnol.

H. Maas and T. G. Sandercock, “Force transmission between synergistic skeletal muscles through connective tissue linkages,” J. Biomed. Biotechnol.2010, 575672 (2010).
[CrossRef] [PubMed]

M. Canato, M. Dal Maschio, F. Sbrana, R. Raiteri, C. Reggiani, S. Vassanelli, and A. Megighian, “Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle dystrophy: Col6a1-/- and mdx,” J. Biomed. Biotechnol.2010, 981945 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. Guan, C. Li, Y. Ling, Y. Yang, J. B. Vorstius, R. P. Keatch, R. K. Wang, and Z. Huang, “Quantitative evaluation of degenerated tendon model using combined optical coherence elastography and acoustic radiation force method,” J. Biomed. Opt.18(11), 111417 (2013).
[CrossRef] [PubMed]

B. R. Klyen, T. Shavlakadze, H. G. Radley-Crabb, M. D. Grounds, and D. D. Sampson, “Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography,” J. Biomed. Opt.16(7), 076013 (2011).
[CrossRef] [PubMed]

W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, and Z. Chen, “Phase-resolved acoustic radiation force optical coherence elastography,” J. Biomed. Opt.17(11), 110505 (2012).
[CrossRef] [PubMed]

L. V. Coutts, N. R. Miller, C. C. Harland, and J. C. Bamber, “Feasibility of skin surface elastography by tracking skin surface topography,” J. Biomed. Opt.18(12), 121513 (2013).
[CrossRef] [PubMed]

K. E. O’Hara, T. Schmoll, C. Vass, and R. A. Leitgeb, “Measuring pulse-induced natural relative motions within human ocular tissue in vivo using phase-sensitive optical coherence tomography,” J. Biomed. Opt.18(12), 121506 (2013).
[CrossRef] [PubMed]

N. Dragostinoff, R. M. Werkmeister, J. Klaizer, M. Gröschl, and L. Schmetterer, “Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry,” J. Biomed. Opt.18(12), 121502 (2013).
[CrossRef] [PubMed]

V. Crecea, A. Ahmad, and S. A. Boppart, “Magnetomotive optical coherence elastography for microrheology of biological tissues,” J. Biomed. Opt.18(12), 121504 (2013).
[CrossRef] [PubMed]

K. M. Kennedy, R. A. McLaughlin, B. F. Kennedy, A. Tien, B. Latham, C. M. Saunders, and D. D. Sampson, “Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues,” J. Biomed. Opt.18(12), 121510 (2013).
[CrossRef] [PubMed]

V. Y. Zaitsev, L. A. Matveev, A. L. Matveyev, G. V. Gelikonov, and V. M. Gelikonov, “Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability,” J. Biomed. Opt.19(2), 021107 (2014).
[CrossRef] [PubMed]

B. F. Kennedy, F. G. Malheiro, L. Chin, and D. D. Sampson, “Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans,” J. Biomed. Opt.19(7), 076006 (2014).
[PubMed]

K. M. Kennedy, C. Ford, B. F. Kennedy, M. B. Bush, and D. D. Sampson, “Analysis of mechanical contrast in optical coherence elastography,” J. Biomed. Opt.18(12), 121508 (2013).
[CrossRef] [PubMed]

J. Muscle Res. Cell Motil.

K. P. García-Pelagio, R. J. Bloch, A. Ortega, and H. González-Serratos, “Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice,” J. Muscle Res. Cell Motil.31(5-6), 323–336 (2011).
[CrossRef] [PubMed]

J. Physiol.

G. J. Pinniger, K. W. Ranatunga, and G. W. Offer, “Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke,” J. Physiol.573(3), 627–643 (2006).
[CrossRef] [PubMed]

K. S. Ramaswamy, M. L. Palmer, J. H. van der Meulen, A. Renoux, T. Y. Kostrominova, D. E. Michele, and J. A. Faulkner, “Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats,” J. Physiol.589(5), 1195–1208 (2011).
[CrossRef] [PubMed]

Lancet Neurol.

K. Bushby, R. Finkel, D. J. Birnkrant, L. E. Case, P. R. Clemens, L. Cripe, A. Kaul, K. Kinnett, C. McDonald, S. Pandya, J. Poysky, F. Shapiro, J. Tomezsko, C. Constantin, and DMD Care Considerations Working Group, “Diagnosis and management of Duchenne muscular dystrophy, Part 1: Diagnosis, and pharmacological and psychosocial management,” Lancet Neurol.9(1), 77–93 (2010).
[CrossRef] [PubMed]

Mol. Ther.

T. Shavlakadze, J. White, J. F. Y. Hoh, N. Rosenthal, and M. D. Grounds, “Targeted expression of insulin-like growth factor-I reduces early myofiber necrosis in dystrophic mdx mice,” Mol. Ther.10(5), 829–843 (2004).
[CrossRef] [PubMed]

Muscle Nerve

K. A. Ramsey, A. J. Bakker, and G. J. Pinniger, “Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle,” Muscle Nerve42(5), 769–777 (2010).
[CrossRef] [PubMed]

A. R. Gillies and R. L. Lieber, “Structure and function of the skeletal muscle extracellular matrix,” Muscle Nerve44(3), 318–331 (2011).
[PubMed]

Nature

E. E. Zubrzycka-Gaarn, D. E. Bulman, G. Karpati, A. H. M. Burghes, B. Belfall, H. J. Klamut, J. Talbot, R. S. Hodges, P. N. Ray, and R. G. Worton, “The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle,” Nature333(6172), 466–469 (1988).
[CrossRef] [PubMed]

Neurobiol. Dis.

M. D. Grounds, H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca, “Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy,” Neurobiol. Dis.31(1), 1–19 (2008).
[CrossRef] [PubMed]

Neuromuscul. Disord.

M. J. Spencer and J. G. Tidball, “Do immune cells promote the pathology of dystrophin-deficient myopathies?” Neuromuscul. Disord.11(6-7), 556–564 (2001).
[CrossRef] [PubMed]

H. G. Radley-Crabb, J. Terrill, T. Shavlakadze, J. Tonkin, P. Arthur, and M. D. Grounds, “A single 30 min treadmill exercise session is suitable for ‘proof-of concept studies’ in adult mdx mice: a comparison of the early consequences of two different treadmill protocols,” Neuromuscul. Disord.22(2), 170–182 (2012).
[CrossRef] [PubMed]

Neuropathol. Appl. Neurobiol.

G. R. Coulton, J. E. Morgan, T. A. Partridge, and J. C. Sloper, “The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation,” Neuropathol. Appl. Neurobiol.14(1), 53–70 (1988).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol.56(1), R1–R29 (2011).
[CrossRef] [PubMed]

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol.52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Skeletal Radiol.

E. E. Drakonaki and G. M. Allen, “Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy,” Skeletal Radiol.39(4), 391–396 (2010).
[CrossRef] [PubMed]

Wound Repair Regen.

C. Y. L. Chao, Y.-P. Zheng, and G. L. Y. Cheing, “A novel noncontact method to assess the biomechanical properties of wound tissue,” Wound Repair Regen.19(3), 324–329 (2011).
[CrossRef] [PubMed]

Other

B. F. Kennedy, K. M. Kennedy, A. L. Oldenburg, S. G. Adie, S. A. Boppart, and D. D. Sampson, “Optical coherence elastography,” in Optical Coherence Tomography: Technology and Applications, J. G. Fujimoto, and W. Drexler, eds. (Springer, to be published).

V. M. Zatsiorsky and B. I. Prilutsky, Biomechanics of Skeletal Muscles (Human Kinetics, 2012).

Supplementary Material (2)

» Media 1: MP4 (8175 KB)     
» Media 2: MP4 (8137 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics