Abstract

Melanoma is the most aggressive skin cancer type. It is characterized by pigmented lesions with high tissue invasion and metastatic potential. The early detection of melanoma is extremely important to improve patient prognosis and survival rate, since it can progress to the deadly metastatic stage. Presently, the melanoma diagnosis is based on the clinical analysis of the macroscopic lesion characteristics such as shape, color, borders following the ABCD rules. The aim of this study is to evaluate the time-resolved fluorescence lifetime of NADH and FAD molecules to detect cutaneous melanoma in an experimental in vivo model. Forty-two lesions were analyzed and the data was classified using linear discriminant analysis, a sensitivity of 99.4%, specificity of 97.4% and accuracy of 98.4% were achieved. These results show the potential of this fluorescence spectroscopy for melanoma detection.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved fluorescence spectroscopy for clinical diagnosis of actinic cheilitis

Alessandro Cosci, Marcelo Saito Nogueira, Sebastião Pratavieira, Ademar Takahama, Rebeca de Souza Azevedo, and Cristina Kurachi
Biomed. Opt. Express 7(10) 4210-4219 (2016)

Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism

Kinan Alhallak, Lisa G. Rebello, Timothy J. Muldoon, Kyle P. Quinn, and Narasimhan Rajaram
Biomed. Opt. Express 7(11) 4364-4374 (2016)

Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ

Riccardo Cicchi, Alfonso Crisci, Alessandro Cosci, Gabriella Nesi, Dimitrios Kapsokalyvas, Saverio Giancane, Marco Carini, and Francesco S. Pavone
Opt. Express 18(4) 3840-3849 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
    [Crossref] [PubMed]
  2. C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
    [Crossref] [PubMed]
  3. R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
    [Crossref] [PubMed]
  4. S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
    [Crossref] [PubMed]
  5. C. Gerhäuser, “Cancer cell metabolism, epigenetics and the potential influence of dietary components – A perspective,” Biomed. Res. 23(1), 1–21 (2012).
  6. D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
    [Crossref] [PubMed]
  7. K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
    [Crossref] [PubMed]
  8. M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
    [Crossref] [PubMed]
  9. M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
    [Crossref] [PubMed]
  10. R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
    [Crossref] [PubMed]
  11. M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
    [PubMed]
  12. M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
    [Crossref] [PubMed]
  13. P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
    [Crossref] [PubMed]
  14. A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
    [Crossref] [PubMed]
  15. A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
    [Crossref] [PubMed]
  16. S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
    [Crossref] [PubMed]
  17. M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
    [Crossref] [PubMed]

2013 (2)

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

2012 (1)

C. Gerhäuser, “Cancer cell metabolism, epigenetics and the potential influence of dietary components – A perspective,” Biomed. Res. 23(1), 1–21 (2012).

2011 (2)

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

2010 (1)

D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
[Crossref] [PubMed]

2009 (1)

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
[Crossref] [PubMed]

2007 (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

2005 (1)

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

2003 (1)

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[Crossref] [PubMed]

2002 (2)

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

2001 (1)

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

1998 (1)

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

1996 (1)

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

1994 (1)

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

1991 (1)

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Arginelli, F.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Bartoli, C.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Berd, D.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Black, K. L.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Bogdan, A.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Bono, A.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Burd, R.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Butte, P. V.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Cantley, L. C.

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
[Crossref] [PubMed]

Cascinelli, N.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Chiang, G. G.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Chu, Y. W.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Clemente, C.

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Dunsby, C.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Eickhoff, J.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Eigentler, T. K.

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

Elbaum, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Filipp, F. V.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

French, P. M. W.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Friedman, R.

D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
[Crossref] [PubMed]

Garbe, C.

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Gerhäuser, C.

C. Gerhäuser, “Cancer cell metabolism, epigenetics and the potential influence of dietary components – A perspective,” Biomed. Res. 23(1), 1–21 (2012).

Gillies, R. J.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Green, A.

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Greenebaum, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Gutkowicz-Krusin, D.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Hauschild, A.

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

Hendrix, M. J.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Herlands, R. A.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Hever, A.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Honma, M.

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

Islam, M. S.

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

Kamino, H.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Keem, S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Keilholz, U.

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

Kinjo, M.

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

Kirkwood, J. M.

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

Knight, N.

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Knutzen, C. A.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Koenig, K.

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[Crossref] [PubMed]

König, K.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Kopf, A. W.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Langley, R. G. B.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Leeper, D. B.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Lualdi, M.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

Magnoni, C.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Marchesini, R.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Marcu, L.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Martin, N.

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Martínez-Zaguilán, R.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

McKenzie, G.

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Mihm, M. C.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Nakabayashi, T.

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

Nogami, S. S.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

O’Rourke, M.

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Ohta, N.

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

Oliviero, M.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Osterman, A. L.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Owen, C. S.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Owen, J. A.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Peck, G. L.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Pfitzner, J.

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Pikul, B. K.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Ponti, G.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Quintarelli, F.

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Rabinovitz, H. S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Ramanujam, N.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Richardson, A. D.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Riching, K. M.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Riemann, I.

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[Crossref] [PubMed]

Rigel, D. S.

D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
[Crossref] [PubMed]

Rodeck, U.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Ronai, Z. A.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Russak, J.

D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
[Crossref] [PubMed]

Scott, D. A.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Seftor, E. A.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Seftor, R. E.

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Seidenari, S.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Skala, M. C.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Smith, J. W.

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

Sober, A. J.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

Talbot, C.

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Thomas, B. W.

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

Thompson, C. B.

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
[Crossref] [PubMed]

Tomatis, S.

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Vander Heiden, M. G.

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
[Crossref] [PubMed]

Wahl, M. L.

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Wang, S.

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

White, J. G.

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Yong, W. H.

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

Biomed. Res. (1)

C. Gerhäuser, “Cancer cell metabolism, epigenetics and the potential influence of dietary components – A perspective,” Biomed. Res. 23(1), 1–21 (2012).

CA Cancer J. Clin. (1)

D. S. Rigel, J. Russak, and R. Friedman, “The Evolution of Melanoma Diagnosis: 25 Years Beyond the ABCDs,” CA Cancer J. Clin. 60(5), 301–316 (2010).
[Crossref] [PubMed]

Clin. Exp. Metastasis (1)

R. Martínez-Zaguilán, E. A. Seftor, R. E. Seftor, Y. W. Chu, R. J. Gillies, and M. J. Hendrix, “Acidic pH enhances the invasive behavior of human melanoma cells,” Clin. Exp. Metastasis 14(2), 176–186 (1996).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

M. S. Islam, M. Honma, T. Nakabayashi, M. Kinjo, and N. Ohta, “pH dependence of fluorescence lifetime of FAD in solution and in cells,” Int. J. Mol. Sci. 14(1), 1952–1963 (2013).
[Crossref] [PubMed]

J. Am. Acad. Dermatol. (2)

M. Elbaum, A. W. Kopf, H. S. Rabinovitz, R. G. B. Langley, H. Kamino, M. C. Mihm, A. J. Sober, G. L. Peck, A. Bogdan, D. Gutkowicz-Krusin, M. Greenebaum, S. Keem, M. Oliviero, and S. Wang, “Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study,” J. Am. Acad. Dermatol. 44(2), 207–218 (2001).
[Crossref] [PubMed]

A. Green, N. Martin, J. Pfitzner, M. O’Rourke, and N. Knight, “Computer image analysis in the diagnosis of melanoma,” J. Am. Acad. Dermatol. 31(6), 958–964 (1994).
[Crossref] [PubMed]

J. Biol. Chem. (1)

D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith, “Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect,” J. Biol. Chem. 286(49), 42626–42634 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[Crossref] [PubMed]

P. V. Butte, B. K. Pikul, A. Hever, W. H. Yong, K. L. Black, and L. Marcu, “Diagnosis of meningioma by time-resolved fluorescence spectroscopy,” J. Biomed. Opt. 10(6), 064026 (2005).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

S. Tomatis, C. Bartoli, A. Bono, N. Cascinelli, C. Clemente, and R. Marchesini, “Spectrophotometric imaging of cutaneous pigmented lesions: discriminant analysis, optical properties and histological characteristics,” J. Photochem. Photobiol. B 42(1), 32–39 (1998).
[Crossref] [PubMed]

Melanoma Res. (2)

A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. W. Thomas, M. O’Rourke, and N. Knight, “Computer image analysis of pigmented skin lesions,” Melanoma Res. 1(4), 231–236 (1991).
[Crossref] [PubMed]

R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical imaging and automated melanoma detection: questions and answers,” Melanoma Res. 12(3), 279–286 (2002).
[Crossref] [PubMed]

Mol. Cancer Ther. (1)

M. L. Wahl, J. A. Owen, R. Burd, R. A. Herlands, S. S. Nogami, U. Rodeck, D. Berd, D. B. Leeper, and C. S. Owen, “Regulation of intracellular pH in human melanoma: potential therapeutic implications,” Mol. Cancer Ther. 1(8), 617–628 (2002).
[PubMed]

Oncologist (1)

C. Garbe, T. K. Eigentler, U. Keilholz, A. Hauschild, and J. M. Kirkwood, “Systematic Review of Medical Treatment in Melanoma: Current Status and Future Prospects,” Oncologist 16(1), 5–24 (2011).
[Crossref] [PubMed]

PLoS ONE (1)

S. Seidenari, F. Arginelli, C. Dunsby, P. M. W. French, K. König, C. Magnoni, C. Talbot, and G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics,” PLoS ONE 8(7), e70682 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, and N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia,” Proc. Natl. Acad. Sci. U.S.A. 104(49), 19494–19499 (2007).
[Crossref] [PubMed]

Science (1)

M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation,” Science 324(5930), 1029–1033 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Representative fluorescence decay profiles of NADH (A) and FAD (B) molecules in normal skin and melanoma.

Fig. 2
Fig. 2

Boxplot for the parameters obtained in the data analysis for 378 nm excitation: a1, a2, τ1 and τ2, respectively. Significant differences (P < 0.001) exist between normal vs. melanoma for the parameters τ1 and τ2(*).

Fig. 3
Fig. 3

Boxplot for the parameters obtained in the data analysis for 445 nm excitation: a1, a2, τ1 and τ2, respectively. Significant differences (P < 0.001) exist between normal skin vs. melanoma for all parameters (*).

Fig. 4
Fig. 4

Short lifetime component (τ1) of 445 nm excitation against long lifetime component (τ2) of 378 nm, the separating lines was performed using linear discrimination analysis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F( t )= a 1   e t τ 1   +  a 2   e t τ 2   ,

Metrics